Role of XPD and XRCC1 DNA Repair Genes Single Nucleotide Polymorphisms in the Pathogenesis and Outcome of Acute Myeloid Leukemia

(Thesis)

Submitted for the partial fulfillment of the M.D. degree in Clinical Pathology and Lab. Oncology

By

Hany Y. Nasrallah

M.Sc., in Clinical Pathology

Under supervision of

Dr. Khaled M. Aboul-enein, M.D.

Professor of Clinical Pathology,

National Cancer Institute, Cairo University

Dr. Basma M. Elgamal, M.D.

Professor of Clinical Pathology,

National Cancer Institute, Cairo University

Dr. Amany M. Helal M.D.

Ass. professor of Medical Oncology,

National Cancer Institute, Cairo University

Dr. Gamal Thabet Ali M.D.

Ass. professor of Clinical Pathology,

National Cancer Institute, Cairo University

(2013)

Acknowledgement

To **God** goes my deepest gratitude and thanks for achieving any thing in my life.

I would like to express my deepest gratitude and appreciation to **Professor Dr. Khaled M. Aboul-enein** Professor of clinical pathology, National Cancer Institute, Cairo University, for his generous help, and extreme kindness, spending much of his valuble time supporting me. Certainly, his help was more than words can express.

My deep respect and appreciation are expressed to **Professor Dr. Basma M. Elgamal,** Professor of Clinical Pathology, National Cancer Institute, Cairo University for her support, meticulous gidance and supervision during this work.

I am very much appreciating and extremely thankful to **Dr. Gamal Thabet Ali**, Ass. professor of Clinical Pathology, National Cancer Institute, Cairo University for his continuous day to day guidance, encouragement and endless support, which made this work to come to light.

My appreciation and deep thanks are expressed to **Dr. Amany M. Helal,** Ass. professor of Medical Oncology, National Cancer Institute, Cairo University, for her support, clinical data gidance and supervision during this work

Finally, my truthful affection and love to my family, who was, and will always be, by my side all my life.

List of contents

	Page
List of abbreviations	
List of Tables	
List of figures	vi
Introduction and aim of work	viii
Review of Literature	
AML	1
Pathogenesis of AML	2
Prognosis of AML	3
Role of DNA repair genes variants in incidence of AML	6
Role of drug-metabolizing genes variants in incidence of AML	9
Role of DNA repair genes variants in prognosis of AML	10
Role of DNA repair genes variants in prognosis of other cancers	13
DNA repair mechanisms	15
•	
Sources of DNA damage	15
Types of DNA damage	16
Human DNA Repair Systems	18
Base excision repair (BER)	20
Nucleotide excision repair (NER)	25
 DNA double strand breaks repair 	31
1- Homologous recombination (HR)	34
2- Non homologous end joining (NHEJ)	37
3- DNA Damage Response (DDR)	39
 Mismatch repair (MMR) 	43
Mismatch repair in humans	44

MMR and cancers	47
MMR in hematological cancers	49
MMR and cell cycle	52
XPD	53
Structure of XPD molecule.	54
XPD gene mutations	56
XPD in hematological malignancy	57
XRCC1	61
Structure and functions	61
XRCC1 mutations	61
XRCC1 in Hematological malignancy	63
ARCCI III Hematological manghancy	03
Patients and methods	65
	65
Subjects	65
Genotyping	65
PCR-RFLP genotyping analysis	66
Follow up of patients	70
Statistical analysis	73
Results	74
Results of study of incidence SNP in XPD, XRCC1	/ -
	75
among both groups	13
Results of follow up of patients	81
Response to induction therapy at D 14	81
Response to induction therapy at D 28	84
Results of Survival studies about SNP in XPD, XRCC1	
among AML patients	87
Overall survival studies	87
Disease Free survival (DFS) studies	91
Results of early relapse within 3 months in correlation	
with XPD Lys751Gln and XRCC1 Arg399Gln	95
Discussion	97
References	108

List of abbreviations

• ALL Acute lymphoblastic leukemia.

• AML Acute myeloblastic leukemia

• AP site AP endonuclease 1

• APE1 Apurinic/apyrimidinic site

• ASCT Autologous stem cell transplant

• AT Ataxia telangiectasia syndrome

• BAALC Brain and acute leukemia cytoplasmic

• BARD1 BRCA1-associated-RING-domain 1 protein

• BER Base excision repair

• BRCA1 Breast cancer type 1 susceptibility protein

• BRCA2 Breast cancer type 2 susceptibility protein

• BRCT BRCA1 C-terminus

• BM Bone marrow

• cdks Cyclin-dependent kinases

• CEBPA CCAAT/enhance binding protein alpha

• CHK1 Checkpoint kinase 1

• CHK2 Checkpoint kinase 2

• CML Chronic myelogenous leukemia

• COG Children's Oncology Group

• CR Complete Remission

• CYP Cytochrome P450

• CYP1A1 Cytochrome P450 1A1

• DDR DNA damage response

• DNA-PK DNA-dependent protein kinase

• DNAPKcs DNA-dependent protein kinase catalytic subunit

• DSBs DNA double-strand breaks

• ERCC2	Excision repair cross-complementing group 2 protein
• ERG	ETS related gene
• ET	Essential Thrombocythemia
• FISH	fluorescence in situ hybridization
• FLT3	fms-like tyrosine kinase 3
• GGR	Global Genomic Repair
• H2AX	Histone H2A variant
• HCC	Hepatocelular carcinoma
• HD	Hodgkin disease
• HR	Homologous Recombination
• HRR	Homologous Recombination Repair
• IPT	Immunophenotyping
• MAP	MYH-associated polyposis
• MDC1	Damage Checkpoint protein 1
• MDR	Multidrug resistance
• MLL	Mixed-lineage leukemia
• MMR	Mismatch repair
• MPNs	Myeloproliferative neoplasms
• MRN	NBS1-MRE11-RAD50 complex
• MSI	Microsatellite instability
• NBS	Nijmegen breakage syndrome
• NER	Nucleotide Excision Repair
• NHEJ	Non homologous end joining
• NPM	Nucleophosmin
• NSCLC	Non-small-cell lung cancer
• OS	Overall survival
• PAHs	Polycyclic aromatic hydrocarbons
• PARP	Poly ADP-ribose polymerase
• PCR	Polymerase Chain Reaction

-	
• PR	Partial Remission
• PTD	Partial tandem duplication
• PV	Polycythemia Vera
• RD	Resistant disease
• RFS	Relapse free survival
• rhGCSF	recombinant human granulocyte colony-stimulating factor
• ROS	Reactive oxygen species
• RPA	Replication protein A
• SCT	Stem cell transplantation
• SNP	Single nucleotide polymorphism
• SSBs	Single strand breaks
• ssDNA	Single-stranded DNA
• SWOG	Southwest Oncology Group
• t-AML	Therapy related AML
• TCR	Transcription-coupled repair
• TFIIH	Factor II H
• t-MDS	Therapy related Myelodysplastic Syndrome Transcription
• TPMT	Thiopurine S-methyltransferase
• TTD	Trichothiodystrophy
• UV	Ultraviolet light
• XP	Xeroderma pigmentosum
• XPD	Xeroderma pigmentosum D
• XP/CS	Combined XP with Cockayne's syndrome
• XRCC1	X-ray repair cross complementing protein 1
• XRCC3	X-ray repair cross complimenting group 3
• XRCC4	X-ray repair cross complimenting group 4

List of tables

Table number	Name of table	Page
1	Cytogenetics prognostic subgroups of AML	4
2	Disorders causes by DSB	42
3	FAB classification of cases of denovo AML	74
4	Incidence of XPD Lys751Gln among cases and controls	75
5	Incidence of XRCC1 Arg399Gln among both groups	77
6	Combined genotype in both groups	79
7	Combined genotype comparison	80
8	XPD Lys751Gln in relation to patients' response at day 14	81
9	Response to induction therapy on combination of both AC+CC	82
10	XRCC1 correlation with D14 response to induction therapy	83
11	Combination of AG+AC in relation to response at D14	83
12	Relationship of XPD Lys751Gln and response at D28	84
13	AA status versus (AC+CC) as regards response in D28	84
14	XRCC1 correlation with D28 response to induction therapy	85
15	Combination of GG status in D 28 in relation to AG+ AA	86
16	Overall survival study of AML patients	87
17	Combined haplotypes study in relation to survival	90
18	DFS study	91

19	Combining XPD/XRCC1 haplotypes in relation to DFS	94
20	Relapse within 3 months in relation to XPD Lys751Gln	95
21	Relapse within 3 months in relation to XPD Lys751Gln by combining AA/ AC+CC	95
22	Relation of XRCC1 Arg399Gln to relapse after 3 months	96
23	Relation of XRCC1 Arg399Gln to relapse after 3 months upon combining AG+AA	96
24	Combined haplotypes of XPD Lys751Gln and XRCC1 Arg399Gln and relation to early relapse at 3 months	96

List of figures

Figure number	Name of figure	Page
1	BER pathway and its enzymes in order of	23
	action	
2	Mechanism for human nucleotide excision	26
	repair	
3	NER in details	27
4	Schematic representation of the cascade at	33
	the G2M checkpoint	
5	Phosphorylation events in the initiation of	34
	HR.	
6	Mechanisms for DSBs repair	38
7	Phosphorylation events in DDR. Key factors	40
	in the DDR regulate via a series of	
	phosphorylation events	
8	Steps of MMR	46
9	MMR is bidirectional in humans	47
10	Structure of the XPD protein	55
11	PCR products before digestion for XPD	68
	Lys751Gln and XRCC1 Arg399Gln	
12	Genotypes of The XPD Lys751Gln after	69
	digestion	
13	Genotypes of XRCC1 Arg399Gln after	69
	digestion	
14	FAB classification of cases of denovo AML	74
15	Incidence of XPD Lys751Gln in cases	76
	versus controls	
16	Adding non wild versus the wild type of	76
	XPD Lys751Gln	
17	Incidence of XRCC1 Arg399Gln among	77
	cases versus controls	
18	Adding non wild versus the wild type of	78
	XRCC1 Arg399Gln	

19	Response to induction therapy on	82
	combination of both AC+CC.	
20	Combination of AG+AC in relation to	83
	response at D14	
21	AA status versus (AC+CC) as regards response in D28	85
22	Figure (22): Combination of GG status in D	86
	28 in relation to AG+ AA	
23	Overall survival study of AML group	87
24	Overall survival study in relation to XPD	88
	Lys751Gln	
25	Overall survival study in relation to XPD	89
	Lys751Gln upon adding AC+CC	
26	Overall survival study in relation to XRCC1	89
	Arg399Gln	
27	Overall survival study in relation to XRCC1	90
	Arg399Gln upon adding AG+AA	
28	DFS study	92
29	DFS study in relation to XPD Lys751Gln	92
30	DFS study in relation to XPD Lys751Gln	93
	upon combining of AC+CC	
31	DFS study in relation to XRCC1 Arg399Gln	93
32	DFS study in relation to XRCC1 Arg399Gln	94
	upon combining AG+AA	

Introduction:

Acute myeloid leukemia (AML) is a genetically heterogenous disease, in which somatic mutations that disturb cellular growth, proliferation and differentiation accumulate in hematopoietic progenitor cells, leading to increased number of immature myeloid cells in bone marrow (B.M.) (Mrozek et al., 2004).

In recent years, DNA repair pathways that may protect against DNA damage from both endogenous and exogenous sources have been described. Whenever repair is ineffective, chromosomal instability may occur leading to either apoptosis or oncogenesis (*Voso et al.*, 2004).

The main four pathways for DNA repair according to *Seedhouse et al. in 2004* are mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), and DNA double strand break (DSB) repair.

It is now believed that an individual DNA repair capacity is genetically determined and is the result of combinations of multiple genes. Studies have noticed association between DNA repair genes polymorphism and risk of various types of cancers (*Matullo et al., 2006*) including AML and in particular therapy related AML (t-AML) (*seedhouse et al., 2004*).

The most frequent type of gene polymorphisms is the so called single nucleotide polymorphism (SNP), in which one amino acid substitution occurs (*Efferth et al.*, 2005). Several SNPs in DNA repair genes have been defined including XRCC1 Arg399Gln in BER pathway (*Seedhouse et al.*, 2004), also in NER pathway XPD Lys751Gln was described, while in DSB repair pathway RAD51 G135C and XRCC3 Thr241Met have been defined (*Kuptsova et al.*, 2007).

The XRCC1 Arg399Gln polymorphism was found to be a risk factor for the development of chronic obstructive pulmonary disease (COPD) (Yang et al., 2009) up to development of lung cancer (Li et al., 2008), also data from Kelsey et al. in 2004 are consistent with a potential role of the XRCC1 Arg399Gln polymorphism in bladder cancer and high risk of Hodgkin disease (H.D.) (EL-Zein et al., 2009).

Long el al. in 2009 found that individuals featuring the XPD genotypes with codon 751 Gln alleles were related to an elevated risk of hepatocelular carcinoma (HCC). Also it was found to be associated with esophageal adenocarcinoma (Tse et al., 2008).

The XPD codon 751 polymorphism is an independent prognostic marker for disease-free survival and overall survival in elderly AML patients treated with chemotherapy, and specifically that the glutamine variant was associated with a poorer prognosis relative to the lysine variant (*Allan et al.*, 2004). Moreover XPD codon 751 glutamine encoding variant significantly

associates with risk of developing AML with a chromosome 5q or a chromosome 7q deletion (Smith et al., 2007).

Seedhouse et al. in 2004 reported that a protective effect against AML in individuals who carry at least one copy of the variant XRCC1 399Gln allele compared to those homozygous for the common allele.

In a study made by *Ozcan et al in 2008*, XPD-751Gln and also XRCC1-399 variants were detected that Gln/Gln genotype as a protector, and both decreased significantly in AML. In leukemias with early relapse, XPD 751 Lys/Lys genotype was observed to be at a statistically higher ratio (p=0.042).

Aim of work:

The aim of this work is to asses the frequencies and coincidence of XPD Lys751Gln and XRCC1 Arg399Gln polymorphism among newly diagnosed denovo AML patients and their association with response to induction therapy as well as with other prognostic factors.

#