

Ain Shamus University
Faculty of Medicine
Dept. of Aesthesia, Intensive Care, and Pain
Management

PAIN MANAGEMENT IN HEPATIC PATIENTS IN THE INTENSIVE CARE UNIT

An Essay
Submitted for Partial Fulfillment of Master Degree in
General Intensive Care

by **Tamer Abd EL-Monem Abd El-Salam El-Tonamly**

Supervisors

Dr. Gamal EL-Din Mohammad Ahmad Elewa

Prof. of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Hanan Mahmoud Farag

Assistant Prof. of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

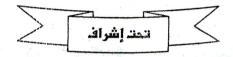
Dr. Mohammed Abd Al Salam Ali Al Gendy

Lecturer of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University AIN SHAMS UNIVERSITY FACULTY OF MEDICINE Anesthesia, Intensive care & Pain Management Department جامعة عين شمس كلية الطيب الشهدير والرعاية المركزة وعلاج الألم

Pain Management In Hepatic Patients In The Intensive Care Unit علاج الألم في مرضى الكبد بوحدة العناية المركزة

An Essay

Submitted For Partial Fulfillment of Master Degree In Intensive Care
By


TAMER ABD EL-MONEM ABD EL-SALAM EL-TONAMLY رسالة مقدمة من الطبيب / تامر عبد المنعم عبد السلام الطنملي

Contents:

- 1. Introduction.
- 2. Hepatic patients in the ICU.
- 3. Pain and liver
- 4. Pain management in hepatic patients.
- 5. Summary.
- 6. Arabic summary.
- 7. References.

المحتويات:

- ١ المقدمة
- ٢. مرضى الكبد بوحدة العناية المركزة.
 - ٣. الألم والكيد.
 - ٤. علاج الألم في مرضى الكبد.
 - ه. الملخص.
 - ٦. الملخص العربي.
 - ٧. المراجع.

Prof. Dr. Gamal El din Mohammed Ahmed Elewa

Prof. of Anesthesia And Intensive Care Faculty of Medicine — Ain Shams University الأستاذ الدكتور / جمال الدين محمد أحمد عليوة أستاذ التخدير والعناية المركزة كلية الطب ـ حامعة عين شمس

~/sQ2/~

Assistant Prof. Dr. Hanan Mahmoud Farag Assistant Prof. of Anesthesia And Intensive Care Faculty of Medicine – Ain Shams University أستاذ مساعد / حنان محمود أرج أستاذ مساعد التخدير والعناية المركزة كلية الطب ــ حامعة عين شمس

21:541°

خ. تمرا بهر

Dr. Mohammed Abd Al Salam Ali Al Gendy

Lecturer of Anesthesia And Intensive Care Faculty of Medicine – Ain Shams University دكتور / محمد عبد السلام على الجندي

مدرس التخدير والعناية المركزة كلية الطب ـ جامعة عين شمس

Faculty of Medicine Ain Shams University 2008

النظام المنظمة المنظمة

(سورة البقرة أية 32)

ACKNOWLEDGEMENT

First and foremost, I thank **ALLAH**, the most Merciful and the most Gracious.

I would like to express my sincere gratitude to *Dr. Gamal EL-Din Mohammad Ahmad Elewa*, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, whose guidance and sincere supervision were the cornerstone in the building up of this essay.

I would also like to express my sincere gratitude to *Dr. Hanan Mohammed Farag*, Assistant Prof. of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her keen supervision and advice.

My deepest thanks are to *Dr. Mohammed Abd Al Salam Ali Al Gendy*, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his invaluable help, cooperation and encouragement.

My deepest thanks and appreciation are to my dear family for their support and cooperation.

CONTENTS

	Page
Acknowledgement	i
List of abbreviations	ii
List of tables	iv
List of figures	v
1-Introduction	1
2-Hepatic patients in ICU	3
3-Pain and liver	34
4-Pain management in hepatic patient	55
5-Summary	95
6-References	98
7-Arabic summary	120

LIST OF ABBREVIATIONS

ACC	Anterior cingulated cortex.		
ACTH	Adreno-cortico-trophic hormone.		
ADH	Anti-diuretic hormone.		
AEDS	Anti-epileptic drugs.		
ALF	Acute liver failure.		
BPI	Brief pain inventory.		
BP	Blood pressure.		
cAMP	Cyclic adenosine monophpsphate.		
CGB	Celiac ganglia block.		
CGRP	Calcitonin gene related peptide.		
CNCP	Chronic non cancer Pain.		
CNS	Central nervous system.		
COX	Cyclo-oxygenase.		
COX-2	Cyclo-oxygenase-2.		
COX-3	Cyclo-oxygenase-3.		
CPP	Cerebral perfusion pressure.		
CSF	Cerebro spinal fluid.		
CT	Computerized tomography.		
CVP	Central venous pressure.		
CYP-450	Cytochrome P-oxidase 450.		
DVT	Deep venous thrombosis.		
EA	Epidural analgesia.		
FFP	Fresh frozen plasma.		
FHF	Fulminant hepatic failure.		
FRC	Functional residual capacity		
GABA	Gamma-aminobutyric acid		
GH	Growth hormone.		
HE	Hepatic encephalopathy.		
HRS	Hepato-renal syndrome.		
IAH	Intra-abdominal hypertension.		
IAP	Intra-abdominal pressure		
ICH	Intra-cerebral hemorrhage.		
ICP	Intra-cranial pressure.		
ICU	Intensive care unit.		
IM	Intra-muscular.		
INR	International normalized ratio.		
IV	Intra-venous		

IVI	Intra-venous infusion		
IV-PCA	Intra-venous patient-controlled analgesia.		
LA	Local Anesthetics		
LC	Locus coeruleus		
LHA	Lateral hypothalamic area		
MOF	Multi-Organ failure		
MPQ	McGill pain questionnaire.		
MRI	Magnetic resonance imaging		
NAPQI	N-acetyl-p-benzo-quinone imine		
NK-A	Neuro-kinin A		
NK- B	Neuro-kinin-B		
NMDA	N-methyl-D-aspartate.		
NO	Nitric oxide		
N/OFQ[ORL-1]	Nociceptin/orphanin FQ/ opioid-receptor-like		
NOS	Nitric oxide synthetase		
NSAIDS	Non-steroidal anti-inflammatory drugs		
PAG	Peri-aqueductal grey matter		
PCA	Patient-controlled analgesia		
PEEP	Positive end expiratory pressure		
PT	Prothrombin time		
PVB	Para-vertebral block		
PVN	Peri-ventricular hypothalamic nucleus		
RBCs	Red blood cells		
SAAG	Serum-to-ascites-ablumin gradient		
SBP	Spontaneous bacterial peritonitis		
SC	Sub-cutaneous		
SHN	Sub-massive hepatic necrosis		
SIRS	Systemic inflammatory response syndrome		
TENS	Trans-cutanous electrical nerve stimulation		
TCAS	Tricyclic antidepressants		
TIPS	Transjugular intrahepatic portosystemic		
TNF	Tumer necrosis factor		
TPVS	Thoracic paravertebral space		
5HT3	5-hydroxytryptamine		

LIST OF TABLES

Table	Title	
Table 1-1	O'Grady's nomenclature of F.H.F	4
Table 1-2	Grades of hepatic encephalopathy	5
Table 1-3	Causes of portal hypertension	15

LIST OF FIGURES

Figure	Title	Page
Figure 2-1	Afferent nerves pathway	41
Figure 2-2	Efferent nerves pathway	42
Figure 2-3	The short form of MPQ	46
Figure 3-1	Acetaminophen metabolism	58
Figure 3-2	Location of celiac ganglia and needles placed for blockage either by anterior (A) or posterior (P) approach.	90

INTRODUCTION

INTRODUCTION

Pain management is an essential component of medical care for the critically ill patient. The intensive care unit (ICU) is a unique care setting where critically ill patients receive expeditious and aggressive life-sustaining interventions and where suffering is common. Thus, high-quality pain management and optimal palliative therapy are part of the therapeutic targets for every patient. Pain assessment and management fall within the comprehensive scope of palliative care that should be provided concurrently with curative interventions and supportive care in the ICU. Appropriate pain management begins with recognizing, evaluating, and monitoring pain. Achieving excellent pain management requires knowledge and skill in pharmacologic, behavioral, social, and communication strategies (*Mularski et al.*, 2009).

Patients with liver disease represent an important population in the ICU because these patients experience a particularly high morbidity and mortality among the critically ill (*Volk and Marrero*, 2006).

A number of factors complicate the management of pain in the hepatic patients as the clinical utility of most analgesic drugs is altered in the presence of impaired hepatic function. This is not simply because of variations in clearance of the parent drug, but also due to potential production and accumulation of toxic or therapeutically active metabolites. Some analgesic agents may also aggravate pre-existing hepatic disease (*Murphy*, 2005).

Fortunately, newer drugs and pain control modalities emerge to enhance our pain control armamentarium, such as acetaminophen, fentanyl, remifentanil, patient-controlled analgesia, epidural analgesia, paravertebral block, celiac ganglia block, acupuncture and transcutaneous electrical nerve stimulation (*Mularski et al.*, 2009).

A proper understanding of pain patho-physiology together with Proper selection of analgesic drug or analgesic modality tailored to patient's specific condition will lead to best adequate and safe pain control (*Erstad et al.*, 2009)

HEPATIC PATIENTS IN ICU

HEPATIC PATIENTS IN INTENSIVE CARE UNIT

Hepatic patients are admitted to ICU due to acute liver failure (Stravitz et al, 2007) or advanced de-compensated, complicated chronic liver disease (Volk & Marrero, 2006). Also, they can be admitted for post-operative care (e.g. Post-liver transplant) (Humer et al, 2003) or for non hepatic causes (e.g. acute myocardial infarction and polytrauma). Moreover, non hepatic patients may suffer from liver dysfunction during their stay in ICU (e.g. shock liver and post- traumatic liver failure) (Strassburg, 2003 and Bechstein et al, 2002).

I-Acute Liver Failure:

Acute liver failure, defined as the onset of hepatic encephalopathy and coagulopathy within 26 weeks of jaundice in a patient without preexisting liver disease (*Stravitz et al.*, 2007).

Once a patient is diagnosed with ALF, the patient should be stabilized and transferred to a liver transplant centre, as liver transplantation offers the best long-term survival in patient likely to die of this condition. The patient should be cared for in the ICU and supportive measures initiated, including close neurologic evaluation and glucose monitoring (*Han and Hyzy*, 2006).

Although survival rates for patients with ALF improved since the availability of liver transplantation, ALF remains a very critical condition that can take a previously healthy individual to terminal illness in a matter of days. The most important indicator that ALF is progressive and may be life-threatening is the development of acute hepatic encephalopathy. This condition is the key element in the definition of the most serious forms of

ALF: fulminant hepatic failure (F.H.F) and sub-massive hepatic necrosis (S.H.N). Fulminant hepatic failure is defined as the development of acute hepatic encephalopathy within 8 weeks of the onset of symptomatic hepato-cellular disease in a previously healthy person. Sub-massive hepatic necrosis is defined as the development of acute hepatic encephalopathy within 9-24 weeks of the onset of symptomatic hepatocellular disease in a previously healthy person (*Michael*, 2001).

Many different nomenclatures have been used to describe F.H.F O'Grady's nomenclature is frequently used which divides patients into three groups: hyper-acute, acute and sub-acute (Table 1-1) (*Laurence et al.*, 1997).

Table 1-1: O'Grady's nomenclature of F.H.F.

Group	Time from onset of	Frequency of	Frequency
	jaundice to	cerebral odema	of ascites
	encephalopathy (in	(in percent)	
	days)		
Hyperacute	<8 days	Frequent (69%)	Rare
Acute	8-28 days	Frequent (56%)	Rare
Subacute	>28 days	Rare (14%)	Frequent

Laurence et al., 1997

Ostapowicz and his colleages (2002) reported that the most common causes of ALF in the United States are acetaminophen (paracetamol) toxicity (39%), idiosyncratic drug reaction (13%), hepatitis A and B (12%) and at times no etiology can be determined (17%).

The hall mark features of F.H.F are Hepatic encephalopathy and co-agulopathy. Patients with F.H.F can rapidly progress from mild hepatic encephalopathy to deep coma (Table 1-2) (*Marrero et al.*, 2003).