

Application of Sage Essential Oil as Anti-Food Spoilage Microorganisms in Some Meat and Poultry Products

By

Asmaa Mohammed Ahmed Khalef

Bachelor of Specific Education, El Minia University, 2006, Home Economic department

Under the Supervision of:

Prof. Dr. Mohamed Ahmed Arafa
Prof. Dr. of Food Microbiology
Faculty of Home Economics
Helwan University

Dr.Samah Mohamed Esmeal

Dr. Yasser Mahmoud Ibraheem

Asst. Prof. of Nutrition and Food Science Home Economics Department , Faculty of Specific Education , Ain Shams University Asst. Prof. of Nutrition and Food Science Home Economics Department , Faculty of Specific Education , Ain Shams University

APPROVAL SHEET

Name of student: Asmaa Mohammed Ahmed Khalaf

Title of thesis: Application of Sage Essential Oil as Anti-Food Spoilage Microorganisms in Some Meat and Poultry Products

Degree: M.Sc.Degree in *Specific* Education (Nutrition and Food science).

This Thesis for M.Sc.degree has been approved by:

Prof. Dr. 1. A Zafra.

Prof.Dr: Queen

Prof. Dr. Samah Mohamad

Prof. Dr. Zenah M. astefiernase

Prof. Dr. Yasser Medamettel Heldin

Committee in Charge

24/6/2013

ACKNOWLEDGEMENT

Firstly, all praises are due to **ALLAH**, Who blessed me with kind professors and colleagues and gave me the support to produce this work. To all those who helped me to produce this work for those my deep and sincere gratitude.

I would like to express my deepest and sincere gratitude to **Prof .Dr. Mohamed Ahmed Arafa,** Professor of Food Microbiology, Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, for kindly suggesting the problem and providing so much of his time in supervising and guiding the work. His kind supervision valuable comments, continuous encouragement during carrying out the investigation as well as during writing the thesis are highly appreciated.

Special thanks are due to **Dr. Samah Mohamed Ismael**, Associate Prof. of Food Sci. and Nutrition. Faculty of Specific Education, Ain Shams University for her assistance, encouragement through all times and helping during practical work and in the final writing of my thesis.

Special acknowledgement to **Dr. Yasser Mahmoud Ibraheam Alwy**, Associate Prof. of Nutrition and Food Science, Home Economics Department, Faculty of Specific Education, Ain Shams University, for his supervision, trustful help, advice and giving me the power to complete this work and his kind help during carrying out this work.

I would like to thank every person who spent time or effort in helping me with my work including the technicians who co-operated with me throughout this work.

ABSTRACT

Application of Sage Essential Oil as Anti-Food Spoilage Microorganisms in Some Meat and Poultry Products

By

Asmaa Mohammed Ahmed Khalaf B.Sc.Home Economic (Home Economic Dep.), Fac.of Specific Education, Minia Univ., 2006

Abstract

The present study was carried out to determine the effect of adding natural Sage essential oil in minced beef meat, minced chicken meat and chicken fillet meat on their microbiological profiles, also to evaluate the effect of this oil on the shelf-life of the products under study during preservation by refrigeration. Twenty three compounds of the *Salvia Officinalis* L. essential oil were determined by gas chromatography-mass spectrometry. GC/MS analyses revealed that the major compounds of the Sage essential oil (%) were Eucalyptol (44.49), Trans-Caryophyllene (18.19), Sabinene (6.57), α-Pinene (5.30) and Camphor (4.81). These compounds as the main constituents (79.36%) of Sage essential oil. The microbial load of minced beef meat, minced chicken meat and chicken fillet meat samples were significantly reduced by SEO 0.75% (v/w) as compared to microbial loads with the same samples without addition of Sage essential oil.

Gram – negative bacteria as E.coli was less susceptible than gram–positive bacteria as S.aureus. SEO has minimum inhibitory concentration (MIC or bacteriostatic concentration) of 1.0% (v/v) for E.coli and 0.50% (v/v) for S.aureus whereas it was 0.75% (v/v) for Aspergillus flavus in vitro, whereas SEO has minimum bactericidal

concentration (MBC or bactericidal concentration) of >1.0% (v/v) for *E.coli* and 0.75% (v/v) for *S.aureus* while it was $\leq 1.0\%$ (v/v) for Aspergillus flavus in vitro. A higher concentration is needed to achieve the same effect in the product samples. At concentration of ≤ 0.75 % (v/w) SEO significantly reduced the mean value of all investigated microorganisms except *E.coli* which needed < 1.0% (v/w) as a (MIC). Regarding to S. aureus, the concentration of > 0.75 % (v/w) was adequate to kill all the cells of S.aureus, whereas the concentration of > 1.0% (v/w) was a (MBC) for *E.coli*. In respect of shelf – life from a microbiological point of view, the results indicate that SEO 0.75% (v/w) extended the shelf – life of the naturally contaminated minced beef meat, minced chicken meat and chicken fillet meat samples from 3 and 4 days to 7 days at 4°C ±1 according to the microbiological examination and sensory evaluation .The microbial load values were not reached to unsatisfactory or unacceptable limits at 4° C ± 1 up to 7 days of preservation. Neither color nor appearance of the treated samples were affected with the addition of SEO, except the samples gained a strong, warm, spicy taste and herbaceous and camphoraceous scent. Indeed, it is usually desirable .Generally; the treated samples with 0.75 % (v/w) Sage essential oil were more acceptable than other.

Keywords: Sage essential oil, Beef and poultry products, Beef and poultry preservative, Food microbiology, Aflatoxins.

CONTENTS

	Page
LIST OF TABLES	11
LIST OF FIGURES	13
LIST OF ABBREVIATIONS	14
1- INTRODUCTION	17
2- AIM OF STUDY	22
3- REVIEW OF LITERATURE	24
3.1. Food Preservation	24
3.1.1The Most Important Kinds of Spoilage in Meat	26
3.2. Essential Oils .	28
3.2.1.Historical Use of Essential Oils:	29
3.2.2.Current use of EOs.	30
3.2.3. Antimicrobial activity of essential oils .	31
3.3. Uses of salvia officinalis essential oil .	33
3.3.1.Antioxidant activity of salvia officinalis EOs	33
3.3.2. Antimicrobial activity of Salvia Officinalis EOs.	37
4 - Materials And Methods .	41
4.1 Materials .	41
4.1.1. Sage Essential Oil.	41
4.1.2. Beef Meat	41
4.1.3. Chicken Meat	41
4.1.4. Chicken Fillets Meat	41
4.2 Methods.	41
4.2.1. Analyses of the essential oil.	41

	Page
4.2.1.1. Gas Chromatograph.	41
4.2.1.2. Gas Chromatograph – Mass Spectrometry	42
4.2.2. Sampling Of Minced Beef And Chicken Meat	43
4.2.3. Sampling of Chicken Fillet Meat.	43
4.3. Microbiological analyses .	44
4.3.1.Determination of total aerobic bacteria counts	
(TABCs) (CFU/g).	45
4.3.2 .Determination of total psychrotrophic bacteria	
counts (TPBCs) (CFU/g).	45
4.3.3.Determination of total lipolytic bacteria counts	
(TLBCs) (CFU/g)	45
4.3.4. Determination of Total Proteolytic Bacteria	
Counts (TPBCs) (CFU/g)	45
4.3.5.Determination of total mold & yeast counts	
(TM&YCs) (CFU/g).	46
4.3.6 .Detection and determination of Bacillus cereus	
counts (CFU/g)	46
4.3.7. Detection and determination of Staphylococcus	
aureus counts . (CFU/g)	46
4.3.8. Detection and determination of Esherichia coli	
counts . (MPN/g)	46
4.3.9. Detection of salmonella spp.per 25g sample	47
4.4. Experiments with liquid media.	47
4.4.1. Experiments with Aspergillus flavus and	
aflatoxins.	48

	Page
4.5. Preparation of media .	48
4.6. Preparation of Fungal Spore Suspension .	49
4.7. Inoculation and Incubation.	49
4.8. Determination the effect of SEo on the aflatoxins	
production by A.flavus.	50
4.9. Total aflatoxins Analyses .	51
4.10. Extraction of total Aflatoxins .	51
4.11. Aflatoxins Content.	51
4.12. Evaluation Method.	52
4.13. Sensory Evaluation.	52
4.14. Statistical Analyses .	53
5. Results And Discussion .	55
5.1. Chemical Composition Of The Essential Oil.	55
5.2. Microbiological profile of fresh beef meat burger.	57
5.3. Microbiological profile and shelf-life of beef meat	
burger stored at refrigeration temperature	59
5.4. Beef meat burger storage trails	60
5.5. Microbiological profile of fresh chicken meat burger	63
5.6. Microbiological profile and shelf-life of chicken meat	
burger stored at refrigeration temperature	65
5.7. Chicken meat burger storage trails	67
5.8. Microbiological profile of fresh chicken fillets meat	71
5.9. Microbiological profile and shelf-life of chicken fillets meat	
stored at refrigeration temperature	72

	Page
5.10. Chicken fillets meat storage trails	74
5.11. Determination of bacteriostatic and bactericidal	
concentrations	78
5.12. Effects of sage oil on the growth of Aspergillus flavus	
and aflatoxins production	81
5.13. Sensory Evaluation	85
6. RECOMMENDATIONS	90
7. SUMMARY AND CONCLUSION	92
8. REFERENCES	97
الملخص العربي	117
الملخص العربى المستخلص العربي	121

LIST OF TABLES

N	Title	Page
(1)	Chemical Composition of the essential oil of Salvia Officinalis.	55
(2)	Microbiological profile of beef meat burger after 5 h of slaughtering as control samples .	57
(3)	Microbiological profile and shelf-life of beef meat burger after stored at 4 $$ C ± 1 up to 4 days	59
(4)	Microbiological profile and shelf-life of beef meat burger treated with SEo $0.75~\%~(v/w)$ after stored at 4 $~C\pm 1~up$ to 8 days .	61
(5)	Microbiological profile of chicken meat burger through 3 h of slaughtering as control samples .	64
(6)	Microbiological profile and shelf-life of chicken meat burger after stored at 4 $$ C ± 1 up to 4 days .	66
(7)	Microbiological profile and shelf-life of chicken meat burger treated with SEo 0.75 % (v/w) after stored at 4 C ± 1 up to 8 days .	68
(8)	Microbiological profile of chicken fillets meat after 3 h of slaughtering as control samples .	71
(9)	Microbiological profile and shelf-life of chicken fillets meat after stored at 4 $C \pm 1$ up to 5 days.	73
(10)	Microbiological profile and shelf-life of chicken fillets meat treated with SEo 0.75% (v/w) after stored at 4 C	, 5
	± 1 up to 8 days.	75

N	Title	Page
(11)	Bacteriostatic & bactericidal and (MIC) & (MFC)	
	concentrations (%) of SEO against Escherichia coli ,	
	Staphylococcus aureus and Aspergillus flavus .	78
(12)	SEO effects on A. flavus growth and aflatoxins	
	production in broth medium.	81
(13)	Mean score of sensory evaluation of cooked beef meat	
	burger treated with different concentrations.	85
(14)	Mean score of sensory evaluation of cooked chicken	
	meat burger treated with different concentrations.	85
(15)	Mean score of sensory evaluation of cooked chicken	
. ,	fillet meat treated with different concentrations.	85

LIST OF FIGURES

N	Title	Page
(1)	Chemical composition of the essential oil of Saliva Officinalis	
	Officinalis	56
(2)	Microbiological profile and shelf-life of beef meat	
	burger after stored at 4°C ±1 up to 4 days without SEO	
	and 8 days with SEO 0.75% (v/w)	62
(3)	Microbiological profile and shelf-life of chicken meat	
	burger after stored at 4°C±1 up to 4 days without SEO	
	and 8 days with SEO 0.75% (v/w).	69
(4)	Microbiological profile and shelf-life of chicken fillets	
	meat after stored at 4°C ±1 up to 4 days without SEO &	
	8 days with SEO 0.75% (v/w) and control samples	76
(5)	Effect of sage oil on the inhibition of A. flavus colony	
	growth on 8th day. A (♦) 1.0 %, B (■) 0.75%, C (◀)	
	0.50%, D (×) Control 0.0%.	79
(6)	Effect of sage oil on A. flavus colony growth during 8 days	
	of incubation at 25 °C on a PDA medium. A (♦) 1.0 %, B	
	(■) 0.75%, C (◀) 0.50%, D (×) Control 0.0%.	81

LIST OF ABBREVIATIONS

SEO Sage Essential Oil

+Ve Positive detected

BGLB Brilliant Green Lactose Bile

C Celsius

CFU Count Flora Unit

E.Coli Escherichia Coli

EOs Essential Oils

EOSQ Egyptian Organization for Standardization and Quality

g Grame

GC/MS Gas Chromatography-Mass Spectrometry

GR Glutathione Reductase

GST Glutathione S-transferase

h Hour

ICMSF International Commission on Microbiological

Specification for Foods

ICMSF International Commission on Microbiological

Specification for Food

l Liter

LP Lipid Peroxidation

LST Lauryl Sulfate Tryptose

LST Lauryl Sulfate Tryptose

MBC Minimum Bactericidal Concentration

MFC Minimal Fungicidal Concentration

mg Milligram

MIC Minimum Inhibitory Concentration

ml Milli Liter

MPN Most Probable Number

MRSA Methicillin-Resistant Staphylococcus aureus

MTC Maximal Tolerated Concentrations

OD Optical Density

PBS phosphate-Buffer Saline

PDA Potato Dextrose Agar

RSC Radical Scavenging Capacity

RSD Relative Standard Deviation

S.aureus Staphylococcus aureus

S.D Standard deviation

S.E. Standard error of the mean

TABCs Total Aerobic Bacteria Counts

TAFs Total Aflatoxins

TLBCs Total Lipolytic Bacteria Counts

TM&YCs Total Mold & Yeast Counts

TPBCs Total Psychrotrophic Bacteria Counts

TPBCs Total Proteolytic Bacteria Counts

USA United State Of America

V/V Volume/ Volume

V/W Volume/ Weight

–Ve Negative detected

VRE Vancomycin-Resistant Enterococci

WHO World Health Organization

"YES" Yeast Extract Sucrose