Bacterial colonization in diabetic and non-diabetic patients with Athlete's foot

Thesis

Submitted for Partial Fulfillment of M.Sc. in **DERMATOLOGY**

By

Shady Hassan El-Maghraby (M.B., B.Ch.)

Supervised by

Prof. Amr Abdel-Hakim Rateb

Professor of Dermatology, Faculty of Medicine, Cairo University

Dr. Iman Muhammad Amin

Assist. Professor of Dermatology, Faculty of Medicine, Cairo University

Dr. Nadia Madany

Lecturer of Microbiology, Faculty of Medicine, Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY

2014

ACKNOWLEDGMENTS

First of all, I am deeply thankful to **Allah** by the grace of whom this work was possible.

I wish to express my deepest gratitude to **Prof. Amr Rateb**, Professor of Dermatology, Faculty of Medicine, Cairo University, for his kind support and supervision. It was by his continuous guidance that this work came to light.

Also, I would like to thank Assist. Prof. Iman Amin, Assist. Professor of Dermatology, Faculty of Medicine, Cairo University for her kindness, great support and meticulous revision throughout the research work.

I would also like to thank Assist. Prof. Nadia Medany, Assist. Prof. of Microbiology, Faculty of Medicine, Cairo University, for her great effort and indispensable help throughout the practical part of this work.

Finally, I would also like to thank my father, mother and family for the support they provided me through my entire life.

Abstract

In resistant and recurrent cases of Athlete's foot, bacterial superinfection

should be suspected, culture and sensitivity tests should be done for both

fungal and bacterial organisms, and antibiotics must be prescribed if the

results show bacterial growth. Patient education is important to aware

the patients and their families about the foot hygiene, especially in cases

with diabetes mellitus who may suffer from foot ulcers, impaired wound

healing, cellulites and diabetic foot which may end by lower limb

amputation.

Keywords: Athlete's foot- C. parapsilosis- HSGs- T. Tonsurans

TABLE OF CONTENTS

Subjects	
List of Abbreviations	
List of Figures	
List of Tables	
Introduction	
Aim of Work	
Review of Literature:	
Resident and Transient Bacterial Flora	
Fungal Affection of the Foot:	
A. Dermatophytosis	15
B. Candidosis	27
Bacterial Affection of the Foot	
Microbial Colonization and Invasion of Diabetic Skin	
Control & Treatment	
Patients and methods	53
Results	
Discussion	75

Conclusion	83
Recommendations	84
Summary	85
References	88
Arabic Summary	١

List of Abbreviations

C. albicans	Candida albicans
C. dubliniensis	Candida dubliniensis
C. guilliermondii	Candida guilliermondii
Cparapsilosis	Candida parapsilosis
DM	Diabetes mellitus
DTH	Delayed-type hypersensitivity
E. Floccosum	Epidermophyton floccosum
FFI	Fungal foot infection
Gram +ve	Gram positive
Gram -ve	Gram negative
HSGs	Hyphae-specific genes
M. Canis	Microsporum canis
PL	Phospholipases
SAP	Secreted aspartyl proteinases
T. Mentagrophytes	Trichophyton mentagrophytes
T. Rubrum	Trichophyton rubrum
T. Tonsurans	Trichophyton tonsurans

List of Figures

Figure no.	Figure name	Page no
Figure 1	Maceration of the second, third and fourth interdigital	17
Figure 2	Maceration of the toe web	17
Figure 3	T. rubrum downy form	23
Figure 4	T. rubrum showing both a macroconidium and some microconidia	23
Figure 5	T. mentagrophytes	24
Figure 6	E. floccosum	25
Figure 7	C. albicans, Some cells have assumed a small, round form, while others are long, filamentous hyphal cells.	32
Figure 8	Tinea pedis with overgrowth of <i>Pseudomonas</i> aeruginosa	36
Figure 9	Type of diabetes mellitus in the diabetic group	61
Figure 10	The incidence of recurrent attacks	63
Figure 11	Types of isolated bacteria	67
Figure 12	Types of isolated bacteria in both groups	68
Figure 13	Gram +ve & Gram -ve organisms in both groups	70
Figure 14	Types of isolated dermatophytes	71

Figure 15	Comparison between the diabetic and the non-diabetic	72
	groups as regards the isolated dermatophytes	
Figure 16	Types of isolated non-dermatophytic fungi	73
Figure 17	Comparison between both diabetic and non-diabetic	74
	groups concerning the isolated non-dermatophytic fungi	

List of Tables

Table no.	Table Name	Page no.
Table 1	Type of diabetes mellitus in the diabetic group	61
Table 2	Duration of Athlete's Foot	61
Table 3	Family history of athlete's foot	62
Table 4	The incidence of recurrent attacks	63
Table 5	The incidence of other skin manifestations	64
Table 6	The incidence of other fungal infections	65
Table 7	The incidence of mixed bacterial infection	66
Table 8	Types of isolated bacteria	67
Table 9	Types of isolated bacteria in both groups	68
Table 10	Gram +ve & gram –ve organisms in both groups	70
Table 11	Types of isolated dermatophytes	71
Table 12	Comparison between the diabetic and the non-diabetic groups as regards the isolated dermatophytes	72
Table 13	Types of isolated non-dermatophytic fungi	73
Table 14	Comparison between both diabetic and non-diabetic groups concerning the isolated non-dermatophytic fungi	74

Introduction

Athlete's foot is the most common presentation of Tinea Pedis. It refers to interdigital maceration, pruritus and malodor, which occur particularly between the lateral three toes. This chronic intertriginous type, begins as scaling, erosion, and erythema of the interdigital and subdigital skin of the feet (*Verma et al.*, 2007).

Tinea pedis is estimated to be the second most common skin disease in the United States, behind acne (*Weinstein et al., 2002*), and up to 15% of the population may manifest the disease (*Bell-Syer et al., 2002*).

Three species of fungi; Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum are together responsible for the vast majority of cases of tinea pedis throughout the world (*Al Hasan et al.*, 2004).

Trichophyton rubrum accounted for over 76% of all dermatophyte infections, including tinea pedis, and may account for over 2/3 of all tinea pedis infections (*Weinstein and Berman*, 2002).

Typically, the interweb space is colonized by polymicrobial flora. Initially, a dermatophyte infection at this site may damage the stratum corneum and produce natural substances with antibiotic properties that alter the composition of the resident bacterial flora, encouraging the proliferation of antibiotic-resistant strains (*Lin et al.*, 2011).

Organisms not normally considered as resident members of the skin flora may sometimes colonize and become established in modest numbers for relatively long periods. Bacteria of this intermediate category have been labeled temporary residents (*Hay et al.*, 2010).

Gram-negative mixed bacterial infection with organisms may represent a mild secondary infection of tinea pedis. Over time, in the setting of moisture and maceration, multiple fungal and bacterial organisms may proliferate. The process may progress to advanced stages of gram-negative infection with sepsis (*Karaca et al.*, 2008).

High glucose levels in urine, general tissue fluids and sweat may make diabetics more susceptible to candidosis. Phagocytosis is also impaired in diabetics (*Tapper-Jones et al.*, 1981).

In diabetic patients, fungal infection is a very common foot problem and if left untreated can threaten tissue viability leading to secondary bacterial infection and cellulitis. Management of fungal disease is often considered difficult due to high relapse and re-infection rates, although by introducing a combination of therapies, the success in treating this stubborn condition can be greatly improved (*Bristow*, 2008).

AIM OF THE WORK

The aim of the study is to compare between bacterial colonization in Athlete's foot in diabetic and non-diabetic patients.

Resident and Transient Bacterial Flora:

The normal human skin is colonized by huge numbers of bacteria that live harmlessly as commensals on its surface and within its follicles. At times, overgrowth of some of these resident organisms may cause minor disease of the skin or its appendages. On other occasions, bacteria not normally found there may colonize the epidermis and lead rapidly to disease. Apart from the arrival of these frankly pathogenic organisms, a wide range of bacteria land more or less fortuitously on the skin, and linger briefly in small numbers before disappearing, unable to multiply and thrive in this relatively inhospitable environment. Bacteriological sampling will reveal the presence of these otherwise unsuspected 'transients' (*Madhu et al.*, 2005).

Organisms not normally considered as resident members of the skin flora may sometimes colonize and become established in modest numbers for relatively long periods. Bacteria of this intermediate category have been labeled temporary Residents (*Hay et al., 2010*).

Temporary resident bacteria may confuse the picture, being less easy to distinguish from stable commensal organisms than obvious transients. It is possible, however, to describe a basic pattern of colonization of healthy human skin from which some variations may be observed. In simple terms, dry skin supports a low level of colonization, while moist areas and those well supplied with sebaceous glands are heavily populated. Most organisms reside on the surface of the stratum corneum. These surface dwellers are not evenly distributed but are aggregated into microcolonies of varying sizes comprising perhaps 50 or several

hundred cells. Some may be larger still. The hair follicles are inhabited by anaerobes (Propionibacterium species) in their deeper parts and nearer the surface by aerobic cocci in addition to Malassezia species of yeasts. There are, however, no bacterial inhabitants of sweat ducts or glands, eccrine or apocrine. A variety of antimicrobial peptides are present in the eccrine glands, some more antibacterial than others, and these may be relevant (*Rieg et al.*, 2006).

The role of the normal flora:

The normal flora of the skin appears to have several functions, of which the most important is probably defence against bacterial infection through bacterial interference. It is almost certainly responsible for the production of free fatty acids from skin lipids. There is considerable evidence that Propionibacterium acnes and the Gram-positive cocci are capable of hydrolyzing lipids of sebum to produce free fatty acids (*De Luca et al., 2010*). The acidic environment which results inhibits the growth of other organisms such as Streptococcus pyogenes (*Stinson et al., 1998*).

It seems likely from their localization, and from evidence comparing the effects of systemic tetracycline administration with topical neomycin application, that P. acnes deep in the follicles actually undertakes most of this hydrolysis (*Marples et al.*, 1971).

Apocrine sweat is sterile and odourless when secreted. The odour develops due to bacterial action, mainly attributable to aerobic corynebacteria. (*Preti et al.*, 2010)

In shoe wearers, the fourth toe cleft is often hyperhydrated and the skin macerated. Such conditions sustain an extraordinarily large number of bacteria, mainly the common organisms of the general resident flora, but Gram-negative