Evaluation of Diagnostic Value and Sensitivity of Tumor Markers

Essay

Submitted for Partial Fulfillment of Master Degree In Clinical Pathology

By

Saba Abdallah Abdelhamed

M.B.B.Ch.(M.Sc.)

Faculty of Medicine For girls – Al Azhar University

Supervised by

Prof.Dr./ Iman Mohamed Said El Bagoury

Professor of Clinical Pathology
Faculty of Medicine for Girls
Al Azhar University

Prof.Dr./ Amal Abdelaleem Morsy

Professor of Clinical Pathology Faculty of Medicine for Girls Al Azhar University

Faculty of Medicine for Girls
Al Azhar University
2014

بِسْمِ اللَّهِ الرّحَمَٰنِ الرّحيمِ

الَّزِمْهُ الْمُهُمُّنِ عَلَمْهُ لَا اللَّهِ الْحَمْلَةِ عَلَمْهُ وَالْحَمْيُّ [...] الَّذِمِهُ اللَّهُ اللَّ

[फ़र्णि] क्षिये] कि व्याप्ट के क्षेत्र के वित्वादित कि वित्वादेश के व

صدق الله العظيم

النمل.. اية رقم ١٩

Acknowledgements

First, and foremost, my deepest gratitude and thanks should be offered to "ALLAHI", the most kind and most merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr./Iman Mohamed Said El Bagoury,**Professor of Clinical Pathology, Faculty of Medicine for Girls,
Al Azhar University for her continuous support and guidance for me to present this work. It really has been an honor to work under her generous supervision.

I acknowledge with much gratitude to **Prof. Dr./ Amal Abdelateem Morsy**, Professor of Clinical Pathology, Faculty of Medicine for Girls, Al Azhar University, for her great supervision and unlimited help to provide all facilities to accomplish this work.

I can't forget thank all members of, Clinical Pathology, Faculty of Medicine (girls), Al Azhar University, for their help and support.

Last but not least, thanks to my Parents and my Family for helping me to finish this work.

🖎 Saba Abdallah Abdelhamed

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	
: Alpha-fetoprotein	
Introduction	
Aim of the Work	3

List of Abbreviations

ACTH : Adrenocorticotropic hormone

AFP : Alpha-fetoprotein

AFP-MRNA : Alpha-fetoprotein messenger ribonucleic acid

AFU : Alpha-1 fucosidase **ALF** : Alpha albumin

AP : Alkaline phosphatase

ASCO : American society of clinical oncology

BC : Bladder cancer

BCG : Bacillus-Calmette-Guerin

BCM : Breast cancer mucin

BHCG : Beta human chorionic gonadotrophin

BLAP : Biliary alkaline phosphatase

BM : Bone marrow

BPH : Benign prostatic hyperplasia

BTA : Bladder tumor antigen CA15-3 : Cancer antigen 15-3 CCA : Cholangiocarcinoma

CCA-CA : Cholangiocarcinoma- associated carbohydrate

antigen

CEA : Carcinoembryonic antigen

CK : Cytokeratins

CRC : Colorectal cancer
CTC : Circulating tumor cell
DCIA : Ductal carcinoma in situ
DCP : Descarboxy prothrombin
DFS : Disease free survival
TGF : Tissue growth factor
DNA : Deoxy ribonucleic acid

DTCs : Dissaminated tumor cells ECM : Extracellular matrix

EGFR : Epidermal growth factor receptor

List of Abbreviations (Cont...)

EGTM : European group on tumor marker
 ELISA : Enzyme linked immunoassay
 EMA : Epithelial membrane antigen
 EOC : Epithelial ovarian cancer

ER : Estrogen receptor

ERCP : Endoscopic retrograde cholangio-

pancreatography

EUS : Endoscopic ultrasound

FDA : Food and drug administrations

FGF : Fibroblast growth factor

FISH : Fluorescence in situ hyberdization

FNA : Fine needle aspiration

FNBA : Fine needle biopsy aspiration

FOBT : Fecal occult blood test

FOLH1 : Folate hydrolase 1

FQ-PCR : Fluorescent quantitative PCR
GFAP : Glial fibrillary acidic protein
GGT : Gamma glutamyl transferase

GOLPH2 : Golgi phosphoprotein 2

GPC3 : Glypican 3

HCC: Hepatocellular carcinoma

HK2 : Human kallikrein 2HRB : Horseradish peroxidase

HPLC : High performance liquid chromatography
 hTEP1 : human telomerase-associated protein 1
 hTERC : human telomerase RNA component

hTERT : Human Telomerase Reverse Transcriptase

HuCC : Human Cholangiocarcinoma cell **ICMA** : Immunochemiluminometric assay

IDC : Intraductal carcinomaIGF : Insulin- like growth factorIHC : Immunohistochemistry

List of Abbreviations (Cont...)

IL : Interleukin

IQPCR : Immuno quantitative polymerase chain reaction

ITC : Isolated tumor cell

LCA : Lens culinaris lectin agglutinin

LDH : Lactate dehydrogenase

MCA : Mucin like carcinoma associated antigen
MEIA : Microparticle enzyme immune assay

MS : Mass spectrometry

MSIA : Mass spectrometry immune assay

MUC : Mucin

NACB : National academy of clinical biochemistry

NSE : Neuron specific enolase

NMIBC : None muscle invasive bladder cancer

NMP22 : Nuclear matrix protein 22

nRT-PCR : Nasted real time polymerase chain reaction

NSCLC : None small lung cancer OP : Opisthochis viverrini

OS : Overall survival

PAI1 : Plasminogen activator inhibitor 1
PALP : Placental alkaline phosphatase
PAP : Prostate acid phosphatase
PARP : Poly –ADP ribose polymerase

PC : Prostate cancer

PEM : Polymophic epithelial membrane

PGF : Placental growth factor PR : Progestrone receptor PSA : Prostate-specific antigen

PSAD : Prostate specific antigen denisityPSA-DT : Prostate specific antigen doubling time

PSC : Primary sclerosing cholangitis
PSM : Prostate specific membrane

PSMA : Prostate specific membrane antigen

RCAS1 : Receptor binding cancer antigen expressed in siso cells

List of Abbreviations (Cont...)

RIA : Radio-immunoassay RNA : Ribonucleic acid RSs : Recurrence score

RT-PCR : Real time polymerase chain reaction

RTQPCR : Real time quantitative PCR

SF : Scatter factor

SV 40 : Simian vacuolating virus 40

SFLc : Serum free light chain STM : Serum tumor marker

Tg : Thyroglobulin

TGF-B : Transforming growth factor beta

TIMP-1 : Tissue inhibitor of metalloproteinase type 1

TIS : Tumor in situ

TPA : Tissue polypeptide antigen **TSGF** : Tumor specific growth factor

UC : Ulcerative colitis

IUCC : International unit against cancer
 Urokinase plasminogen activator
 VEGF : Vascular endothelial growth factor

VMA : Vanyillylmandelic acid

List of Tables

Cable N	o. Eitle	Page No.
Table (1):	Recommendations for tumor markers to in common malignancies	C
Table (2):	Diagnostic value of hepatocellular card serum markers	
Table (3):	Currently Reported Sensitivity and Specof the Available Urine-Based Tumor min bladder cancer	narkers
Table (4):	Age-specific reference ranges for prospecific antigen	
Table (5):	Definition and Limitations for prospecific antigen	

Introduction

tumor marker is defined, as substance produced by tumor cells, or by other cells of the body, in response to cancer or certain benign conditions. These substances can be found in various body fluids or tissue specimens. Different tumor markers are found in different types of cancer, and levels of the same tumor marker can be altered in more than one type of cancer. In addition, tumor marker levels are not altered in all people with all cancer, especially in early stages. Scientists have not found tumor markers for all types of cancers. They are alone not sufficient for diagnosis, and are combined with biopsy to give a better picture of the clinical relevance of the cancer, or just merely to help diagnose it properly (*Shaiquel et al.*, 2012).

Clinical uses of tumor markers can be broadly classified into 4 groups: screening and early detection, diagnostic confirmation, prognosis and prediction of therapeutic response and monitoring disease and recurrence (*Sharma*, 2009).

Classification scheme for tumor markers as follow: oncofetal antigens as Alpha-Fetoprotein (AFP), hormones as Catecholamines, glycoproteins as Cancer antigen 125 (CA 125), tumor associated viral antigen as Simian vacuolating virus 40 (SV 40), tumor associated proteins markers as immunoglobulins, ultra structural as desmin and components as filament component (*Sharma*, 2009).

There are progressive attempts to improve the sensitivity and/or specificity of tumor markers have led to combination of tumor markers with other procedures (e.g., combination of CA 125 with ultra sonography for early detection of ovarian malignancy) (*Sturgeon et al., 2008*).

Tumor markers can't be construed as primary modalities for the diagnosis of cancer, mainly because of the lake of sufficiently high specificity and sensitivity. However, since the prevalence of disease is likely to be higher in diagnostic situations, tumor markers in conjunction with other diagnostic modalities are helpful in differentiating between benign and malignant diseases, (e.g., CA 125 at levels more than 95 IU/ml, especially in postmenopausal woman with adnexal mass on radiological imaging, is virtually confirmatory of ovarian malignancy (*Sharma*, 2009).

Tumor markers can be detected by either: Chemiluminesces, immunological detection usually relies on monoclonal antibodies that specifically bind to epitopes on tumor markers and are in turn tagged for identification with dyes in immunohistochemistry (IHC) which is the most used technique today, radioactive tags in radioimmuno assay (RIA), enzymes in enzyme linked immunesorbent assay (ELISA), flow cytometry can analyze the presence and percentage of antibody tagged cells, genetic analysis and proteomic (WU, 2007).

Aim of the Work

o throw a light on evaluation of diagnostic value and sensitivity of tumor markers and their laboratory assessment.

tumor marker can be defined as substance present in, or produced by, a tumor itself or produced by host in response to a tumor that can be used to differentiate a tumor from normal tissue or to determine the presence of a tumor based on measurements in blood or secretions. Mostly tumor markers are proteins. These markers may be detected within exfoliated or distributed cells or as circulating agents within peripheral blood or plasma. Other biological specimens, typically bodily fluids (e.g.: Urine, saliva, sputum, cerebrospinal fluid, or effusions) may also contain tumor markers (*Babu et al.*, 2012).

A- An ideal tumor marker theoretically should have the following criteria:

- It should be highly sensitive and should have low false negatives.
- It should be highly specific and should have low false positive.
- It should have high positive and negative predictive value.
- 100% accuracy in differentiating between healthy individuals and tumor patients.
- It should be able to differentiate between neoplastic and non-neoplastic disease and show positive correlation with tumor volume and extent.
- It should predict early recurrence and have prognostic value.
- It should be clinically sensitive i.e., detectable at early stage of tumor.
- Its levels should be preceding the neoplastic process, so that it should be useful for screening early cancer.
- It should be either a universal marker for all types of malignancies or specific to one type of malignancy.

- It should be easily assayable and be able to indicate all changes in cancer patients receiving treatment.
- Should not be very costly.

(Malati, 2007)

B-Classifications of tumor markers:

(1) Epithelial markers

- Cytokeratins (CK)
- Epithelial membrane antigen (EMA)
- Oncofetal antigens
 - a. Alpha-fetoprotein (AFP)
 - b. Carcinoembryonic antigen (CEA)
- Desmoplakin

(2) Muscle antigens

- Desmin
- Actin
- Myoglobin
- Myosin

(3) Vascular antigen

- Cluster Of Differentiationmolecule (CD 34)
- CD 31

(4) Neural antigens

- Neuron specific enolase (NSE)
- Glial fibrillary acidic protein (GFAP)
- Synaptophysin
- Nerve growth factor receptor

(5) Prognostic Markers as AFP, PSA, and CA125

(6) Cell adhesion molecules

- Cadherins
- Integrins
- Selectins

(7) Proliferation markers

- Proliferating Cell Nuclear Antigen (PCNA)
- Ki67

(8) Enzymes and isoenzymes

- Prostatic acid phosphatase (PAP)
- Prostate Specific Antigen (PSA)
- Placental Alkaline Phosphatase (PALP)
- Lysozyme

(9) Protein

- Ferritin
- Glycoprotein
- Beta protein
- Immuno globulins

(10) Hormone receptors

- Estrogen receptor (ER)
- Progesterone receptor (PR)

(Babu et al., 2012).