Thesis

Biological Application of Laser Technology Using Metallic Nanoparticles

Submitted in partial fulfillment of the requirements for The Master of Science degree

In

Laser Science and interactions

By

Mohammed Tharwat Hassan

BSc in chemistry - Cairo University

National Institute of Laser Enhanced Science (N.I.L.E.S)

Cairo University

2008

Thesis

Biological Application of Laser Technology Using Metallic Nanoparticles

Submitted in partial fulfillment of the requirements for The Master of Science degree

In

Laser Science and interactions

By

Mohammed Tharwat Hassan

BSc in chemistry - Cairo University

Supervised by

Prof. Dr. Yehia Badr

Department of Laser science and interactions National Institute of Laser Enhanced Science (N.I.L.E.S)

Prof. Dr. Samia Shouman

Department of Pharmacology National Cancer Institute (N.C.I)

Dr. Maram Hussien

Department of Laser science and interactions National Institute of Laser Enhanced Science (N.I.L.E.S)

National Institute of Laser Enhanced Science (N.I.L.E.S)

Cairo University

2008

Approval Sheet

Biological Application of Laser Technology Using Metallic Nanoparticles

Name of Candidate,

Mohammed Tharwat Hassan

Submitted to;

Department of Laser Science and interactions
National Institute of Laser Enhanced Science (N.I.L.E.S)
Cairo University
2008

Supervisor committee

Prof. Dr. Yehia Badr

Department of Laser science and interactions National Institute of Laser Enhanced Science (N.I.L.E.S)

Prof. Dr. Samia Shouman

Department of Pharmacology National Cancer Institute (N.C.I)

Dr. Maram Hussien

Department of Laser science and interactions National Institute of Laser Enhanced Science (N.I.L.E.S)

ACKNOWLEDGMENT

I would like to express my sincere and deep gratitude to my supervisor **Prof. Yehia Badr**, Department of Laser science and interactions, National Institute of Laser Enhanced Science (N.I.L.E.S), for his valuable help, cooperation and advice in every step of this work; it was a great honor to work under his guidance and supervision.

It gives me great pleasure to express my deep thanks and gratitude to **Prof. Samia Shouman**, Department of Cancer Biology, National Cancer Institute (N.C.I), for her continuous help, supervision, guidance, criticism, valuable, discussion and reading through out this thesis.

I also offer my thanks to **Dr.Maram Hussein**, Department of Laser science and interactions National Institute of Laser Enhanced Science (N.I.L.E.S).

Special thanks go to **Prof. Samia's research group** in the National Cancer Institute (N.C.I), whose help me in the biological study in this work and also for **Mr. Tamer Mahamoud**, Theodor Bilharz Research Institute, Medicinal Chemistry and Biochemistry Department, Medicinal Chemistry Laboratory.

I would like to thank my family who gives me supports and precious help to make this work, and I would like to thank everyone who helps during the progress of this work and stand beside me to do it.

Mohammed Tharwat Hassan

List of Figures

Fig 1-1 Au bulk and Au nanoparticles	4
Fig 1-2 Neem (Azadirachta indica) tree and leaves.	10
Fig1-3 structure of bioactive Neem compounds	13
Fig 1-4 Cassia glauca	14
Fig 1-5 Vitex trifolia L	17
Fig1-6 DNA-gold nanoparticle conjugates.	26
Fig 1-7 A spherical nanoparticles adhering to cell layer under flow	28
Fig 1-8 passive targeting, the EPR effect. Tumor tissues are known to have leaky vasculature and results in passive accumulation of nanoparticles and this phenomenon is referred to as EPR	29
Fig 1-9 Active targeting, Nanoparticles with ligands or molecules attached to their surface can target tumor cells preferentially over healthy cells	29
Fig 3-1 The mice distribution in the vitro experiment	56
Fig 3-2 Experimental set up the photofragmentation of gold nanoparticles by excimer laser experiment	58
Fig 3-3 Excimer laser	58
Fig 3-4 Transmission Electronic Microscope Used in Characterization of AuNPs the (CM 20 EFG-TEM) mode.	61
Fig 3-5 ELISA RADER with wave length 570 nm and 96-multiwellplates	64
Fig 3-6 Energy level diagram illustrating the phenomena of absorption and	65
fluorescence of a molecule Fig3-7 Schematic diagram illustrating one example of a fluorescence spectroscopy system designed for evaluation of tissue in vivo	67
 Fig4-1(a) U.V Visible spectrum of Au NP prepared chemically by NaBH4before (above curve) & after (blow curve) irradiated by 100,000 plus of excimer laser (b) TEM image of Au NP prepared by NaBH4, (c) TEM of Au NP prepared by NaBH4 after irradiation by 100,000 pulse of excimer laser 	70

Fig 4-2(a) The U.V Visible spectrum of Au NP prepared by before (above	
curve) & after (blow curve)irradiated by 100,000 pulse of excimer laser (b) The TEM of Au NP prepared by Neem The size of particles	71
=40±7nm (c)TEM image of Au NP prepared by Neem after irradiated by 100, 000 pulse of excimer laser The particle size=(35±5 nm)	
Fig 4-3 (a) UV. Visible spectrum for Au NP prepared by Cassia glauca before (blow curve) & after(above curve) irradiated by 100, 000 pulse of excimer laser	
(b) TEM image of Au NP prepared by Cassia glauca the size of particles=22±3nm	72
(c)TEM image of Au NP prepared by Cassia glauca irradiated by 100,000 pulse of excimer laser the size of particles =18±2nm	
Fig 4-4 (a) UV. Visible spectrum of Au NP prepared by vitex gluca before (above curve) & After	
(blow curve) irradiated by 100,000 pulse of excimer laser (b) TEM image of Au NP prepared by vitex The size of particles =27±5nm	73
(c)TEM of Au NP prepared by vitex irradiated by 100,000 pulse of excimer laser The size of particles =23±4 nm	
Fig 4-5 the photofragmentation mechanism of gold nanoparticle	
	75
Fig 4-6 Cytotoxcitiy of (a) GNPs prepared by Neem (b) GNPs prepared by Vitex (c) GNPs prepared by Cassia glauca (d) GNPs prepared chemically on BHK cell line.	78
Fig 4-7 Cytotoxcitiy of (a) Neem extract (b) GNPs prepared by Neem (c) Vitex extract (d) GNPs prepared by Vitex T (e) Cassia glauca extract (f) GNPs prepared by Cassia glauca (g) GNPs prepared chemically on liver carcinoma cell line(HEPG2).	81
Fig 4-8 Cytotoxcitiy of (a) Neem extract (b) GNPs prepared by Neem (c) Vitex extract (d) GNPs prepared by Vitex T (e) Cassia glauca extract (f) GNPs prepared by Cassia glauca (g) GNPs prepared chemically on colon carcinoma cell line(HCT116).	84
Fig 4-9 Cytotoxcitiy of (a) Neem extract (b) GNPs prepared by Neem (c) Vitex extract (d) GNPs prepared by Vitex T (e) Cassia glauca extract (f) GNPs prepared by Cassia glauca (g) GNPs prepared chemically on cervix carcinoma cell line (HELA)	87
Fig 4-10 Cytotoxcitiy of (a) Neem extract (b) GNPs prepared by Neem (c) Vitex extract (d) GNPs prepared by Vitex T (e) Cassia glauca extract (f) GNPs prepared by Cassia glauca (g) GNPs prepared chemically on brain tumor cell line (U251)	90

Fig 4-11 Cytotoxcitiy of (a) Neem extract (b) GNPs prepared by Neem (c) Vitex extract (d) GNPs prepared by Vitex T (e) Cassia glauca extract (f) GNPs prepared by Cassia glauca (g) GNPs prepared chemically breast carcinoma cell line(MCF7)	92
Fig 4-12 the LIF spectra of normal, tumor and treated tissues	98
Fig 4-13 the LIF spectrum of normal tissue	98
Fig 4-14 the LIF spectrum of tumor tissue	99
Fig 4-15 the LIF spectrum of tumor tissue treated with GNPs prepared by Neem	99
Fig 4-17the picture of mice thigh in different cases, Normal mice, Mice with solid tumor and Mice with solid tumor after injected with gold nanoparticles prepared by Neem.	102

List of Tables

Table 1-1 some bloactive compounds from Neem	12
Table1-2 the composition of Cassia glauca.	16
Table 4-1 the maximum wave length absorptions, full half band widths and sizes of gold nanoparticles before and after irradiated by 100,000 pulse of excimer laser	74
Table4-2 Cytotoxcitiy of gold nanoparticles on the BHK (fibro blast cell line)	77
Table4-3 Cytotoxcitiy on liver carcinoma cell line(HEPG2)	80
Table4-4 Cytotoxcitiy on colon carcinoma cell line(HCT116)	83
Table4-5 Cytotoxcitiy on cervix carcinoma cell line(HELA)	86
Table4-6 Cytotoxcitiy on brain tumor cell line(U251)	89
Table4-7 Cytotoxcitiy on breast carcinoma cell line(MCF7)	93
Table 4-8 Cytotoxcitiy of tested samples in Vitro	94
 Table 4-9 the assignment of the emission bands for LIF of normal, tumor and treated tissues with GNPs. Table (4-9 a) the assignments of the emission bands for LIF of normal tissues Table (4-9 b) the assignments of the emission bands for LIF of tumor tissues 	100
Table (4-9 c) the assignments of the emission hands for LIF of treated tissues	

List of abbreviation

Silver nanowires Ag NWs

American Type Culture Collection ATCC

Gold nanoparticles **Au-NPs**

Dynamic light scattering DLS

7,12-dimethylbenz α-anthracene **DMBA**

Electromagnetic $\mathbf{E}\mathbf{M}$

EPR Enhanced permeability and retention

Flavin adenine dinucleotide **FAD**

Flavin mononucleotide **FMN**

Gamma glutamyl transpeptidase **GGT**

Gold nanoparticles **GNPs**

GNPI Gold nanoparticles which prepared chemically

Gold nanoparticles which prepared Cassia glauca **GNPIV**

GNPII Gold nanoparticles which prepared by Neem

GNPIII Gold nanoparticles which prepared by Vitex trifolia L

Glutathione peroxidase **GPx**

Lipid peroxidation, glutathione **GSH**

Glutathione S-transferase **GST**

The concentration of thioglycoside compound required to IC_{50}

produce 50% inhibition of cell(growth) were calculated using sigmoidal dose response curve-fitting model

Laser Induced Fluorescence Spectroscopy LIFS

Laser Induced Fluorescence Spectroscopy LIFS

Localized surface plasmon resonance LSPR

Metal nanoparticles Me-NPs

mM Mile mole

MRI Magnetic resonance imaging

NADH Nicotinamide adenine dinucleotide

NIR Infrared Region

Nm Nano meter

Nps Nanoparticles

NSL Nanosphere lithography

PL Photoluminescence

S.C Sub continuous injection

SERS Surface-enhanced Raman scattering

SP Surface Plasmon

SPR Surface plasmon resonance

SRB Sulfo-Rhodamine-B

TEM Transmission Electronic Microscope

UV–VIS Ultra violet and visible absorption spectroscopy

Index of symbols

is the radius of the metallic nanosphere a

Silver element Ag Silver ion Ag+Gold element Au Au^3+ Gold ion

fibroblast cell line **BHK** electric field \mathbf{E}

is the extinction of nanoparticles $E(\lambda)$

HAuCl₄ chloroauric acid

Colon carcinoma cell line **HCT116** cervix carcinoma cell line **HELA** Liver carcinoma cell line **HEPG2** breast carcinoma cell line MCF7

is the a real density of nanoparticles N_A

Sodium borohydride NaBH₄

the electric field-induced dipole moment P

S

brain tumor cell line **U251** molecular polarizability α

is the imaginary portion of the metallic nanosphere's

 ε_{i} dielectric function

is the dielectric constant of the medium surrounding the \mathbf{E}_{m}

metallic nanospher

is the real portion of the metallic nanosphere's dielectric \mathbf{E}_{r}

function

is the wavelength of the absorbing radiation λ

Chapter I

Introduction

Introduction	1
1.1. Laser light	3
1.2. Metallic nanoparticles	4
1.3. Gold Nanoparticles GNPs	4
1.4. Surface Plasmon Enhancement (SPE)	4
1.5. Photoluminescence and size dependence	8
1.6. Medical natural plants	9
1.6.1. Neem	9
1.6.1.1. Biological activity of some Neem compounds	11
1.6.1.2. Anti-carcinogenic activity:	11
1.6.2. Cassia glauca	14
1.6.2.1. the chemical compound in cassia glauca	15
1.6.2.2. the antioxidant effect of cassia glauca	15
1.6.3 Vitex trifolia L	17
1.6.3.1. The content and anti cancer effect of Vitex trifolia	17
1.7. Biosynthesis preparations of gold nanoparticles	18
1.8. Laser interaction with gold nanoparticles	20
1.9. Fragmentation mechanisms	21
1.10. Surface-Enhancement Raman scattering	22
1.11. Biological application of gold nanoparticles:	24
1.12. Advances of using gold nanoparticles in tumor imaging.	25

1.13. The gold nanoparticles-DNA interaction	26
1.14. Nanoparticles Targeting	28
1.15. Cytotoxicity of gold nanoparticles	30
1.16. Cytotoxicity of Neem, Cassia glauca, Vitex Trifolia	30
Chapter II	
Literature survey	
2.1. Review	32
2.2. The aim of the work	52
Chapter III	
Material and Method	
3.1 Materials	53
3.1.1 Chemicals	53
3.1.2 Tumors	55
3.1.2.1 Ehrlich Ascites Carcinoma Cell line	55
3.1.2.2 Human Tumor cell lines	55
3.1.3 Animals	55
3.2 Design of work	56
3.3 Methods	57
3.3.1 Preparation of gold nanoparticles chemically using NaBH4	57
3.3.2 Preparation of gold nanoparticles by Green method	57
3.3.3 The photofragmentation of gold nanoparticles by excimer laser experiment.	57
3.3.4 Characterization of gold nanoparticles	59

3.3.4.1 Characterization of gold nanoparticles using UV-Visible Spectrometer	59
3.3.4.2 Characterization of gold nanoparticles using Transmission Electronic Microscope TEM	60
3.3.5 The potential cytotoxicity of gold nanoparticles in vitro	62
3.3.5.1 Determination the number of viable cells	62
3.3.5.2 Cytotoxicity of tested compounds using SRB assay	63
3.2.6 Treatment and diagnosis of solid tumor in mice by gold nanoparticles in vivo.	65
3.2.6.1 The Fluorescence Phenomenon	65
3.2.6.2 Laser Induced Fluorescence Spectroscopy	67
Chapter IV Results and Discussions	
4.1 Characterization of gold nanoparticles	69
4.1.1 The characterization of gold nanoparticles Prepared by NaBH ₄	70
4.1.2 The characterization of gold nanoparticles Prepared by Neem	71
4.1.3 The characterization of gold nanoparticles Prepared by Cassia glauca	72
4.1.4 The characterization of gold nanoparticles Prepared by Vitex Trifolia	73
4.2 Measurement of potential cytotoxicity of natural plants extracts and gold nanoparticles by SRB assay	76

4.2.1 Cytotoxicity of gold nanoparticles on the fibroblast cell line (BHK)	77
4.2.2 Cytotoxicity of natural plants extracts (Neem, Vitex and Cassia glauca) and gold nanoparticles prepared chemically and using these plants extract on liver carcinoma cell line (HEPG2).	79
4.2.3 Cytotoxicity of natural plants extracts (Neem, Vitex and Cassia glauca) and gold nanoparticles prepared chemically and using these plants extract on colon carcinoma cell line (HCT116)	82
4.2.4 Cytotoxicity of natural plants extracts (Neem, Vitex and Cassia glauca) and gold nanoparticles prepared chemically and using these plants extract on cervix carcinoma cell line (HELA)	85
4.2.5 Cytotoxicity of natural plants extracts (Neem, Vitex and Cassia glauca) and gold nanoparticles prepared chemically and using these plants extract on brain tumor cell line (U251)	88
4.2.6 Cytotoxicity of natural plants extracts (Neem, Vitex and Cassia glauca) and gold nanoparticles prepared chemically and using these plants extract on breast carcinoma cell line (MCF7)	91
4.3 Treatment and diagnosis of solid tumor in mice by gold nanoparticles in vivo	97
Conclusion	103
References	105