Chromosomal abnormalities in patients with active and chronic *Schistosoma haematobium* infection

Thesis

Submitted in partial fulfillment of the M.Sc. degree in Parasitology

By

Magda Said Ahmed Abd El-Tawab (M.B.B.Ch)

Demonstrator of Parasitology, Faculty of Medicine, Cairo University

Supervised by

Prof. Dr.Amany Ahmed Abd El-Aal

Professor of Medical Parasitology

Faculty of Medicine

Cairo University

Prof. Dr. Ibrahim Rabia Bauiomy Aly

Professor of Immunology and Parasitology

Department of Immunology and Drug Evaluation

Theodor Bilharz Research Institute (TBRI)

Ass. Prof. Dr. Maha Mohamed Aboul Magd Basyoni

Assistant Professor of Medical Parasitology
Faculty of Medicine
Cairo University

Abstract

The aim of the present study was to explore the cellular kinetics, genomic instability and chromosomal abnormalities in Egyptian patients suffering from acute or chronic schistosomiasis *haematobium* infection.

This study was conducted on 46 patients, 22 of them were diagnosed as active cases while 24 patients suffered from chronic schistosomiasis *haemotobium* complicated by bladder cancer. Three different cytogenetic techniques were employed. These techniques included the nuclear morphocytometric analysis for whole chromosomal content using Feulgen stain, which was performed for all cases. In addition, the Fluorescent In Situ Hybridization (FISH) technique was applied on tissue specimens and the karyotyping technique was applied on peripheral blood monocytes obtained from eight selected cases.

All tissue specimens of chronic cases showed positive findings in nuclear morphocytometric analysis in the form of diploidy, tetraploidy and aneuploidy with high poliferative index. As for the ploidy analysis of urine derived epithelial cells from chronic patients, 5 samples showed aneuploid nuclei with high proliferatine index, while in acute cases, epithelial cells were successfuly recovered and stained in only 4 urine samples, 3 of them were found to be diploid with a high proliferation index.

The 8 chronic patients were examined for the specific deletion of the p53 gene locus by FISH. Three samples (37.5%) were found to have a deletion of the p53 gene as evidenced by the presence of a single copy number of the gene. On the other hand, no numerical chromosomal aberrations were detected by karyotyping, where all samples showed a normal male karyotype (46, XY). However, one out of eight cases (12.5%) showed evidence of chromosomal fragmentations.

Key Words:

Schistosomiasis *haematobium*- chromosomal abnormalities-morphocytometry- FISH- Karyotyping.

ACKNOWLEDGEMENT

First, I would like to express my sincerest gratitude and gratefulness to Allah who blesses and fills me with hope, faith and patience that enable me to carry out all my daily work.

My deepest gratitude, appreciation and great thanks to **Prof. Dr. Amany A. Abd El-Aal**, Professor of Parasitology at the Parasitology Department, Faculty of Medicine, Cairo University, for her generous help, encouragement and continuous support throughout this work. I was honoured by having her as a supervisor, and I am endebted to her since she taught me the value of scientific research and team work. I could never thank her enough and I ask **Allah** to award her for her good will and sincere work.

I am greatly honored to express my thanks and gratitude to **Prof. Dr. Ibrahim R. Bauiomi** Professor of Parasitology and Immunology, Theodor Bilharz

Research Institute, for his guidance and valuable advice.

I would like to express my thanks and gratitude to Ass. Prof. Dr. Maha M. Aboul Magd, Ass. Prof. of Parasitology, Faculty of Medicine, Cairo University, for her valuable help and advice for me to accomplish this work.

I am very much indebted to **Prof. Dr. Mona Mahmoud**, Head of the Parsitological Dept., Faculty of Medicine, Cairo University for her care, guidance and support. I also have to thank Prof. Dr. Azza El-Adawy, Professor of Parasitology and former Head of the Parasitology department, Faculty of Medicine, Cairo University for her continuing help and support.

Many thanks for **Dr. Asmaa A. Abd El-Aal**, Ass. Professor at the Clinical Pathology Department, Faculty of Medicine, Cairo University, for her generous help and valuable advice.

I also have to thank **Dr. Manal A. Badawi**, Assisstant Professor of Pathology, Department of Pathology, National Research center.

My deepest gratitude also to **Dr. Ashraf Omran** Assisstant Professor of Urology, Department of Urosurgery, Faculty of Medicine, Cairo University.

I would also like to deeply thank all the **patients** who have participated in this study for their understanding and cooperation.

Last but not least, I would like to thank my family, especially my beloved mother, who has made a great effort in helping me throughout my work. She is the reason of my success and progress and I owe all the happiness in my life to her.

I also have to thank every person who helped me during this work especially my dear colleagues in the Parasitology Department, Faculty of Medicine, Cairo University, for their great help in this work.

LIST OF ABBREVIATIONS

APCs	Antigen presenting cells
BAC	Bilharzia associated bladder cancer
CAA	Circulating anodal antigen
Сс	Cubic centimeter
CDA	Circulating cathodal antigen
CD	Cluster of Differentiation
CSEA	Circulating soluble egg antigen
CT	Computerized Tomography
DI	DNA index
DNA	Deoxyribonucleic acid
ECP	Eosinophil cationic protein
ELISA	Enzyme-linked immunosorbent assay
ES products	Excretory Secretory products
FFPE	Formalin fixed paraffin embedded
FISH	Fluorescent in situ hybridization
Gm	Gram
HPF	High power field
IFN	Interferon
Ig	Immunoglobulin
IHA	Indirect haemagglutination
IL	Interleukin
IOD	Integrated optical density
LOH	Loss of heterozygosity
Lyso-PS	Lysophosphatidyl-lecithin
Ml	Milliliter
NP- 40	Nonyl phenoxypolyethoxylethanol -40
RNS	Reactive Nitrogen Species
ROS	Reactive Oxygen Species
SCC	Squamous cell carcinoma
SD	Standard deviation
sh28GST antigen	Schistosoma haematobium 28kDa Glutathione S-transferase antigen
SSC	Saline Sodium Citrate

TCC	Transitional cell carcinoma
TGF	Transforming growth factor
TH cells	T helper cells
TNF	Tumour necrosis factor
T reg cells	T regulatory cells
μm	Micrometer

LIST OF FIGURES

FIGURE	PAGE	
Figure 1: Egyptian papyrus documenting the 'a-a-a disease' (haematuria)	5	
Figure 2: Theodor Maximillian Bilharz	6	
Figure 3: Epidemiology of Schistosoma haematobium	8	
Figure 4: Prevalence of schistosomiasis in Egypt during the period 1935-2006	9	
Figure 5: Life Cycle of genitourinary Schistosomiasis	10	
Figure 6: Schistosoma haematobium egg	11	
Figure 7: Loss of heterozygosity	22	
Figure 8: Cell division	31	
Figure 9: Fluorescent in situ hybridization	34	
Figure 10: Interphase FISH and Metaphase FISH	36	
Figure 11: Human female karyotype	38	
Figure 12: Human chromosome	39	
Figure 13: Chromosome banding	40	
Figure 14: Somatic and germ-line mutations	42	
Figure 15: Structural chromosomal abnormalities	43	
Figure 16: Alterations in the content of genetic material	44	
Figure 17: Nucleopore filtration device	57	
Figure 18: Leica DM-LB microscope with JVC color video camera attached to a computer system Leica Q 500IW	60	
Figure 19: Blood culture tubes and blood sample tubes within laminar flow cabinet.	65	
Figure 20: Addition of 0.5 ml of buffy coat to culture medium	66	
Figure 21: Laminar flow cabinet	66	
Figure 22: Incubation of cultured blood samples at 37°C	67	
Figure 23: Culture mixture after the addition on thymidine	67	
Figure 24: Colcemid and 2'-deoxycytidine	68	
Figure 25: Hypotonic KCL solution, Fixation of cultured cells with 3:1 methanol:acetic acid	69	
Figure 26: Dropping and drying of fixed cultured cells	69	
Figure 27: Staining of prepared slides with Wright stain	70	
Figure 28: Vysis paraffin pretreatment kit	72	
Figure 29: Pretreatment solution	74	
Figure 30: Protease buffer and protease powder	74	
Figure 31: p53 deletion probe and rubber cement	76	

Figure 32: Vysis hybrite device	76
Figure 33: Epi-fluorescent microscope	78
Figure 34: Sex distribution in both study groups	81
Figure 35: Treatment status among active infection patients.	83
Figure 36: Treatment status among chronic infection patients.	84
Figure 37:Comparison between mean age in active and chronic	85
groups and the total age mean	
Figure 38:Geographical distribution among study group	87
Figure 39:Unstained Schistosoma haematobium eggs	91
Figure 40: S. haematobium eggs stained with methylene blue and	91
neutral red.	
Figure 41:S. haematobium eggs stained with iodine and unstained	92
Figure 42:Distribution of <i>S. haematobium</i> egg count	93
Figure 43:Calcium oxalate crystals	95
Figure 44:Nuclei of epithelial cells with a normal diploid nuclear content	97
Figure 45:Histogram of diploid reference sample	98
Figure 46:Aneuploidy with high proliferation pattern in urine epithelial cells	100
Figure 47:Combo-blot showing aneuploidy with high proliferation pattern in urine epithelial cells	100
Figure 48:Tissue sample showing diploidy with high proliferation index	102
Figure 49:Combo-blot showing diploidy with high proliferation index in a tissue sample	102
Figure 50: Tissue sample showing aneuploidy with high proliferation index	103
Figure 51: Combo-blot showing aneuploidy with high proliferation index in a tissue sample	103
Figure 52: Interphase cells in tissue samples pretreated for FISH	104
Figure 53: p53 deletion detected by FISH	105
Figure 54:Effect of trypsin on chromosome banding	106
Figure 55:Chromsome fragmentation	107
Figure 56:Appearance of normal karyotype before arrangement of chromosomes	107
Figure 57:Arranged karyogram showing normal male karyotype (46, XY)	108

LIST OF TABLES

Table	Page
Table 1: Taxonomy of Schistosoma haematobium	7
Table 2: Sex distribution among study group	81
Table 3: Treatment status among active infection	82
patients.	
Table 4: Treatment status among chronic infection	83
patients.	
Table 5: Age distribution among study group	85
Table 6: Geographical distribution among study	87
group	
Table 7: Occupational status in both study groups	88
Table 8: Histopathological type of BAC among the	89
chronic infection group	
Table 9: Percentages of leucocyturia and	94
eythrocyturia	
Table 10: Summary of patient data	95
Table 11: Comparison of mean DNA content of	99
urine smears of active and chronic patients	
Table 12: Mean DNA content of BAC versus non-	101
BAC	

TABLE OF CONTENTS

Introduction
Aim of the Work4
Review of literature
•Historical background5
•Taxonomy
•Epidemiology
•Life cycle10
•Pathogenicity12
• Spectrum of urinary bladder pathology caused by S.haematobium15
•Host Parasite Interaction17
•Chromosomal abnormalities in bilharzia associated bladder cancer(BAC)20
•Risk factors for S. haematobium induced bladder cancer
•Diagnosis of urinary schistosomiasis26
•Detection of genetic changes resulting from S. haematobium infection 30 •Value of cytogenetic techniques in the detection of parasitological diseases46
Patients and Methods
Results77
Discussion
Conclusion129
Recommendations 131

Table Of Contents

Summary	133
References	137
Arabic Summary	161

Introduction

Schistosomiasis is a parasitic disease that dates back to antiquity. The ancient Egyptians, through settling in and cultivating the Nile valley, were among the first to contract the disease. The chief symptom, hematuria, was mentioned in the Egyptian papyri (1500-1800 B.C.). **Ferguson** in **1911** was the first investigator who reported a high frequency of bladder cancer in Egypt and suggested an etiological relation with urinary schistosomiasis (**Bolkainy and Chu, 1981**). Furthermore, the consensus of available information strongly implicates an association between *S. haematobium* infection and the induction of bladder cancer (**Mostafa** *et al.*, **1999**).

In Egypt, bladder cancer has been the most common cancer during the past 50 years representing approximately 30,000 new cases each year (**Parkin** *et al.*, **2005**). This neoplasm accounts for 30.8% of the total cancer incidence and is ranked first among all types of cancer recorded in Egyptian males and second only to breast cancer in females (**Gouda** *et al.*, **2007**). The high-risk group included farmers aged 20 years and above, and they contributed to 19% of the total rural population (**Carmack and Soloway, 2006**).

Despite the fact that urinary schistosomiasis constitutes a major global health burden, not only due to its high prevalence in particular foci, but also due it devastating complications, its causative agent, *Schistosoma haematobium*, has acquired the title of the neglected schistosome. There is a wide spectrum of chronic sequelae of urinary schistosomiasis ranging from chronic cystitis and hydronephrosis to the development of carcinoma of the bladder, where *S*.

haematobium is known to be a number one carcinogen in the eastern part of the globe (Rinaldi et al., 2011).

In addition, the number of persons infected with *S. haematobium* supersedes those infected with the other strains of the *Schistosoma* species altogether. The approximate number of human cases of schistosomiasis *haematobium* was estimated by **Rinaldi** *et al.* (2011) to be 112 million cases of human infections in Africa in contrast to 54 million human cases of *Schistosoma mansoni* in Africa and one million cases of *Schistosoma japonicum* in Asia.

The number of research papers investigating *Schistosoma* haematobium, however, seems to be the lowest among all schistosomes. The number of Pubmed citations over the last five years was reported to be 342 citations covering *Schistosoma haematobium* in Africa in contrast to 1377 citations covering *Schistosoma mansoni* in Africa and 644 citations about *Schistosoma japonicum* in Asia (**Rinaldi** *et al.*, **2011**). This relatively modest number of studies tackling urinary schistosomiasis reflects the unsatisfactory exploration of many aspects including the cytokinetic disturbances and subsequent genomic changes resulting from this serious parasitic agent.

Several attempts were made to evaluate the carcinogenic potential of experimentally induced schistosomiasis. It has been suggested that chronic inflammation and subsequent tissue injury attribute to the activation of bladder carcinogens that lead to gene mutations and DNA damage (Badawi et al., 1992 and Mostafa et al., 1999). Mutations arising as a result of carcinogenic insults may lead to augmentation of the genetic instability and hence to malignant transformation (Badawi et al., 1992).

Healthy cellular growth and multiplication is essential to guard against neoplastic changes. Therefore, disturbances in cellular kinetics and cell cycle dynamics play a pivotal role in the genesis of chromosomal aberrations and consequently, the development of malignancy. Studying such abnormalities can be accomplished by different means and in different specimens such as circulating mononuclear cells in blood, tissue specimens and even in exfoliated cells in urine (Carmack and Soloway, 2006).

DNA specific dyes, such as Feulgen stain, have been used to detect the total chromosomal abnormalities resulting from abnormal cell cycle e.g. aneuploidy or micronuclei. While Feulgen ploidy analysis interprets chromosomal content as a whole, karyotyping allows a closer look at each individual chromosome. It has been applied most popularly on cultured peripheral blood mononuclear cells.

Fluorescence in situ hybridization (FISH) is a cytogenetic technique employing nucleic acid probe technology and has been used to take a closer look at chromosomal abnormalities by detecting changes in a single locus or in multiple gene loci (Lokeshwar et al., 2005).