Anesthetic Management of Patients with Muscle Dystrophy

Essay

Submitted for Partial Fulfillment of Master Degree In Anesthiology

By

Farag Youssef Fathi El-Sayed

M.B., B.Ch.

Under Supervision Of

Prof. Dr./ Fekri Fouad Ahmed Al-Bokl

Professor of Anesthesiology and Intensive Care Faculty of Medicine – Ain Shams University

Prof. Dr./ Ra'ouf Ramzy Gad-Allah

Professor of Anesthesiology and Intensive Care Faculty of Medicine – Ain Shams University

Dr./ Osama Ramzy Youssef

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2010

७List of Contents€

	Page
List of tables	•••••
List of figures	•••••
Introduction	
I – Classification	4
II- Pathophysiology	22
III- Preoperative Preparation	
IV- Anesthetic mangement of patients with muscle	
dystrophy	55
V- Postoperative care	
Summary	107
References	110
Arabic Summary	

⊗Acknowledgement**⊗**

First of all, thanks to **ALLAH**, the most merciful for guiding me through and giving me the strength to complete this study.

I will remain greatful to Prof. Dr./ Fekri Fouad Ahmed AI-Bokl, Professor of Anesthesiology and Extensive Care, Faculty of Medicine, Ain Shams University, for his kind support, help and encouragement during the progress and finalizing this work. I would like to thank him for spending much of his precious time in fulfillment of this work. I will always be grateful for his assistance. I enjoyed the most marvelous of the human relations with him, the pleasure of sharing views and ideas on our work.

I would like to express my deepest gratitude and appreciation to **Prof. Dr./ Ra'ouf Ramzy Gad-Allah**, Professor of Anesthesiology and Extensive Care, Faculty of Medicine, Ain Shams University, for his kind support, advices and great help. I really feel great pleasure for working under his kind supervision.

No words can express my thanks to **Dr./ Osama Ramzy Youssef,** Lecturer of Anesthesiology and Extensive Care, Faculty

of Medicine, Ain Shams University, for his precious help and faithful guidance as well as his continuous review of this manuscript till the smallest detail.

७List of Abbreviations**№**

ABGs	Arterial blood gases
ACh	Acetylcholine
AD-EDMD	Autosomal dominant Emery-Dreifuss
	muscular dystrophy
AR-EDMD	Autosomal recessive Emery-Dreifuss
	muscular dystrophy
ATP	Adenosine triphosphate
BIPAP	Biphasic positive airway pressure
BMD	Becker muscle dystrophy
Ca ⁺⁺	Calcium
CABG	Coronary artery bypass graft
CK	Creatinine kinase
CMD	Congenital muscle dystrophy
CPAP	Continuous positive airway pressure
CPK	Creatine Phosphokinase
DAGs	Dystrophin-associated glycoproteins
DD	Distal dystrophy
DMD	Duchenne muscle dystrophy
EC	Excitation-contraction
ECG	Electrocardiogram
ЕСНО	Echocardiography
EDMD	Emery-Dreifuss muscle dystrophy
EMG	Electromyography
FBS	Fasting blood sugar
FCMD	Fukuyama congenital muscular dystrophy
FSHD	Facioscapulohumeral muscle dystrophy
FVC	Forced vital capacity
GA	General anesthesia
HLAs	Human leukocyte antigens
IVCTs	in vitro contracture tests
ICU	Intensive care unit
K ⁺	Potassium
LGMD	Limb Girdle muscle dystrophy

™List of Abbreviations (Cont.) **™**

MD	muscular dystrophy
MDs	Muscular dystrophies
MEB	Muscle-eye-brain
MEP	Maximal expiratory pressure
MH	Malignant hyper thermia
MMD	Myotonic muscle dystrophy
NaHCO ₃	Sodium bicarbonate
NMJ	Neuromuscular junction
NPPV	Noninvasive positive-pressure ventilation
OPMD	Oculopharyngeal muscle dystrophy
PaCO ₂	Arterial tension of carbon dioxide
PACU	Post-anesthesia care unit
PaO ₂	Arterial tension of oxygen
PAO ₂	Alveolar oxygen tension
PCF	Peak cough flow
REM	Rapid eye movement
RV	Residual volume
RYR1	Ryanodine receptor
SDB	Sleep-disorder breathing
SR	Sacroplasmic reticulum
TIVA	Total intravenous anesthesia
TLC	Total lung capacity
VC	Vital capacity
VD	Dead space
VT	Tidal volume
WWS	Walker-Warburg syndrome
XL-EDMD	X-linked Emery-Dreifuss muscular
	dystrophy

GList of Tables∞

No.	Item	Page
1	Cardiac effects of muscle dystrophy	27
2	Clinical features of malignant hyperthermia	81

™List of Figurres

No.	Item	Page
1	Diagram of the cell-surface and cytoskeleton protein complex	22
2	Neurotransmitter release at NMJ in MH	77

INTRODUCTION

Definition:

Muscular dystrophies (MDs) are a heterogeneous group of hereditary disorders characterized by muscle fiber necrosis and regeneration, leading to progressive weakness and degeneration of muscle (*Morgan et al.*, 2006).

Incidence:

The incidence rates of MDs vary depending on the specific type. Duchenne MD is the most common MD and is sex-linked, with an inheritance pattern of 1 case per 3500 live male births (*Dubowitz*, 1995 and Emery, 1993). One third of cases occurs as a result of spontaneous new mutations (Emery, 1991). Becker MD is the second most common form, with an incidence of 1 case per 30,000 live male births (Shapiro and Specht, 1993). Other types of MD are rare. For example, limb-girdle dystrophy occurs in only 1.3% of patients with MDs. The oculopharyngeal type is more common in French Canadians than in other groups (*Pratt and Meyers*, 1986). Distal MD tends to occur more in Sweden.

History:

The first historical account of MD was reported by *Conte* and *Gioja in (1836)*. They described 2 brothers with progressive weakness starting at age 10 years. These boys later developed generalized weakness and hypertrophy of multiple

muscle groups, which are now known to be characteristic of the milder Becker MD. At the time, however, many thought that Conte and Gioja described tuberculosis; thus, they did not achieve recognition for their discovery (*Conte and Gioja*, 1836).

Meryon (1852) reported in vivid details a family with 4 boys, all of whom were affected by significant muscle changes but had no central nervous system abnormality when examined at necropsy. He subsequently wrote a comprehensive monograph on MD and even went on to suggest a sarcolemmal defect to be at the root of the disorder. He further suspected that the disorder is genetically transmitted through females and affects only males.

Guillaume Duchenne was a French neurologist who was already famous for his application of faradism (the use of electric currents to stimulate muscles and nerves) in the treatment of neurologic disorders when he wrote about his first case of MD (*Duchenne*, 1868).

In 1868, he gave a comprehensive account of 13 patients with the disease, which he called "paralysic musculaire pseudo-hypertrophique." Because Duchenne was already held in high esteem for his work in faradism and for his contributions to the understanding of muscle diseases, one of the most severe and classic forms of MD, Duchenne MD, now bears his name.

Types:

- 1. Duchenne muscle dystrophy(DMD)
- 2. Becker muscle dystrophy(BMD)
- 3. Emery-Dreifuss muscle dystrophy(EDMD)
- 4. Facioscapulohumeral muscle dystrophy(FSHD)
- 5. Myotonic muscle dystrophy(MMD)
- 6. Limb Girdle muscle dystrophy(LGMD)
- 7. Oculopharyngeal muscle dystrophy(OPMD)
- 8. Congenital muscle dystrophy(CMD)
- 9. Distal Myopathies

(Dubowitz, 1995)

CLASSIFICATION

There have been several attempts at classifying the different types of muscular dystrophy (MD). Walton and Nattrass proposed an original classification scheme which depends on two considerations: the mode of inheritance and the distribution of predominant muscle weakness (*Alan and Emery*, 1998).

Heritable MDs include the following (Yates et al., 1993):

A. X-Linked Inheritance:

Occurs with the following dystrophies:

- Duchenne muscular dystrophy(DMD)
- Becker muscular dystrophy(BMD)
- Emery-Dreifuss muscular dystrophy (XL-EDMD)

B.Autosomal Recessive Inheritance:

Occurs with the following dystrophies:

- Limb-girdle muscular dystrophies (LGMD) 2A, 2B, 2C, etc
- Congenital muscular dystrophies(CMD)
- Distal dystrophies

C.Autosomal Dominant Inheritance:

Occurs with the following dystrophies:

- Facioscapulohumeral muscular dystrophy(FSHD)
- Myotonic muscular dystrophy(MMD)

- Oculopharyngeal Muscular Dystrophy (OPMD).
- Limb-girdle muscular dystrophies (LGMD)1A,1B,1C, etc.
- Distal dystrophies.
- Emery-Dreifuss muscular dystrophy (AD-EDMD)

1. Duchenne's Muscular Dystrophy (DMD):

Incidence:

Around 1 in 3,500 boys in the UK (Prior et al., 2005).

Aetiology:

DMD is caused by afault in the dystrophin gene which is absent or severely abnormal (*Emery*, 1998).

Genetics of DMD:

DMD is an X-linked recessive trait, "carried" by females and manifest in males (*Bushby et al.*, 2000).

Presentation:

The distinctive feature of Duchenne muscular dystrophy is a progressive proximal muscular dystrophy with characteristic pseudohypertrophy of the calves. All patients have symptoms by age 3 years, but diagnosis is often later. *Symptoms and signs are*:

- Motor milestones delayed (50% not walking by 18 months)
- Inability to run with waddling gait when attempting to do so.
- Inability to jump or hop, no spring in the step.
- Climbing up legs' using the hands when rising from the floor (Gower's sign).

- Hypertrophy of calf muscles (other muscles may also be hypertrophied, including deltoid, quadriceps, tongue and masseters.
- The child may 'slip through the hands' on being lifted, due to hypotonia of muscles around the shoulder.

(Bushby, 2007)

Non-locomotor presenting symptoms are:

- Speech may be delayed.
- Global developmental delay may be the presenting feature (Essex et al., 2001).
- Anaesthetic complications, rarely, are the presentation.
- If DMD is suspected, test the serum creatine kinase. This is always massively elevated in DMD (creatine kinase is also raised in some other muscular dystrophies). If so, refer to a specialist at this stage, for diagnosis and genetic counselling.

Investigations:

- Serum creatine kinase is always massively raised, even to >200 times normal.
- Electromyography (EMG) shows non-specific dystrophic changes.
- Muscle biopsy establishes the diagnosis, showing reduced or absent dystrophin.
- Genetic analysis can confirm the diagnosis in about 70% (when a deletion of the dystrophin gene is present).

• Carrier status can usually be identified by genetic analysis.

Also, serum creatine kinase is usually high in carriers.

(Bushby, 2007)

Differential diagnosis:

- Other muscular dystrophies particularly Becker MD which
 is similar but progresses more slowly. The clinical features,
 muscle biopsy and genetic analysis help distinguish DMD
 from the other muscular dystrophies.
- Other types of myopathy.
- Neurological causes of muscle weakness, e.g. spinal cord lesions, spinal muscular atrophy, motor neurone disease, multiple sclerosis. These conditions are likely to have additional features such as sensory loss, upper motor neurone signs or muscle fasciculation.

Complications:

- Joint contractures are usual.
- Respiratory muscle failure is progressive, leading to hypoventilation, loss of coughing and respiratory infections.
- Cardiomyopathy is common, although actual symptoms are less likely and usually occur late on in DMD. Cardiac arrythmias can occur.
- Respiratory failure, pneumonia and/or cardiomyopathy are the usual cause of death.
- Smooth muscle can also be affected, causing gastrointestinal symptoms such as gastric dilation or pseudo-obstruction.