

FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Performance Improvement of Peak to Average Ratio for

OFDM Carrier

A thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Eng. Ibrahim Sayed Ibrahim

supervised by

Prof. Hadia El Hennawy

Associate Prof. Hesham El Badawy

ACKNOWLEDGMENT

I would like to present my deepest gratitude to Professor Dr. **Hadia El Hennawy** for her precious help, valuable guidance and continuous support.

Professor Dr. Hadia inspired me a sense of enthusiasm, optimism and motivation and she provided me with a lot of her wide knowledge and experience. Professor Dr. Hadia gave me much of her valuable time whenever I asked and she kept encouraging me to work harder. I am very lucky to have Professor Dr. Hadia as my Master supervisor. No words can express my appreciation to her. I will always be very grateful to her for my whole life.

I would like to express my heartfelt thanks to Dr. Hesham Mohammed El-Badawy for his inspiration, valuable guidance and his great efforts in supervising my Master thesis. Throughout my research period, he provided me with lots of valuable ideas and many stimulating suggestions. I will always appreciate his encouragement and support in our discussions. Really, I would like to thank Dr. Hesham for his guidance and support for me in my Master.

Finally, let me thank my family especially my wife, who gave me help and support along the way. And also I would like to thank my friends and my colleagues in my work for their help.

STATEMENT

This dissertation is submitted to Ain shams university for the

degree of Master of Science in Electrical Engineering (Electronics

and Communications Engineering).

The work included in this thesis was carried out by the author at

the Electronics and Communications Engineering Department,

Faculty of Engineering, Ain shams university, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification

at any other university or institution.

Name:

Ibrahim Sayed Ibrahim

Signature:

Date:

/ / 2010

ABSTRACT

Ibrahim Sayed Ibrahim, Performance Improvement of Peak to Average Ratio for OFDM Carrier, Master of Science dissertation, Ain Shams University, 2009.

Orthogonal Frequency Division Multiplexing (OFDM) is widely believed as the enabling Technology for wireless communications due to its high data rates transmission capability and robustness against multipath effects. However, OFDM poses high peak-to-average power ratio (PAPR) problem, as a consequence of independently modulated carriers, that causes low efficiency of the amplifier and increases the complexities of analog-to-digital converter (ADC) and digital-to-analog converter (DAC). This issue is especially important for mobile terminals to sustain longer battery life time. Therefore, reducing the PAPR can be regarded as an important issue to realize efficient and affordable mobile communication services.

This thesis proposes an efficient PAPR reduction methodology for OFDM signals by using carrier interferometry (CI). CI is capable of reducing the probability of high peaks occurrence, however, some of the high peak still remains. Then, Pseudo-Orthogonal Carrier Interferometry(PO-CI) is performed to limit these peaks. In this thesis, we evaluated the PAPR

problem on multicarrier system especially OFDM. For OFDM we proposed the use of CI spreading code to reduce its PAPR. Then we focus on the correction of PO-CI codes The proposed method is able to reduce PAPR and also presented minimum BER performance degradation. Throughput of CI and PO-CI codes is then evaluated with the case of N=256 and large N=512, where N is the number of subcarriers. The results confirm that the proposed method is capable for reducing the PAPR significantly, present minimum BER degradation and does not introduce spectrum increasing or out-of-band noise.

Keywords: OFDM, PAPR reduction, Spreading code, Pseudo-Orthogonal, Carrier Interferometry,

Table of Contents

List of fi	igures	•••••••••••••••••••••••••••••••••••••••	V
List of t	ables		vii
List of a	bbreviatio	ns	viii
List of s	ymbols		X
Chapte	er 1 : INTR	ODUCTION	1
1.1	Introd	duction	1
1.2	Propa	agation Characteristics of mobile radio channels	2
	1.2.1	Attenuation	2
	1.2.2	Multipath Effects	4
	1.2	.2.1 Rayleigh Fading	4
	1.2.	2.2 Frequency Selective Fading	6
	1.2.2	2.3 Delay Spread	6
	1.2.3	Doppler Shift	8
1.3	Multi	iple Access Techniques	9
	1.3.1	Frequency Division Multiple Access	9
	1.3.2	Time Division Multiple Access	11
	1.3.3	Code Division Multiple Access	11
1.4	Thire	d Generation Wireless Networks	13
	1.4.1	Evolution of Telecommunication Systems	14
1.5	4th C	Generation Systems and Beyond	16
1.6	conclu	sion	18
1.7	Thes	sis Objectives	18

1	.8 Thes	sis Organizations 1	8
Chap	ter 2: OFDM	1 systems 2	20
2	2.1 intro	oduction 2	20
	2.1.1	Advantages of OFDM	22
	2.1.2	Disadvantages of OFDM	22
2.	.2 OFD	M Principle 2	23
2.	.3 Frequ	uency Domain Orthogonality 2	24
2.	.4 OFD	M Transmission 2	28
	2.4.1	Mapping Techniques	0
	2.4.2	Serial to parallel concepts	31
	2.4.3	Inverse Fourier Transform	3
2.	.5 Addi	ng a Guard Period to OFDM	4
	2.5.1	Cyclic extension of OFDM symbol	6
	2.5.2	Advantages of adding a Guard Period to OFDM 3	6
	2.5	.2.1 Protection against time offset 3	6
	2.5.	2.2 Protection against ISI	7
	2.5.3	Disadvantages of adding a Guard Period to OFDM 3	9
	2.5.4	Types of guard period	9
	2.5	.4.1 Raised cosine guard period 3	9
2.	.6 A/D	converter4	1
2.	.7 pilot	subcarrier	1
2.	.8 Appl	ications4	12
	2.8.1	Digital Audio Broadcasting 4	2
	2.8.2	Asymetric Digital Subscriber Line 4	13
	2.8.3	High bit rate Digital Subscriber Line 4	3

,	2.8.4	HiperLAN2	44
Chapter	3: 0	OFDM Challenges	45
3.1		Introduction	45
3.2		Synchronization	46
3.3		Frequency error	47
	3.3.1	Carrier Frequency Offset	48
3	3.3.2	Time Offset.	50
3	3.3.3	Phase noise.	51
		3.3.3.1 Phase Distortion	53
3.4]	Linearity Concerns	54
3.5]	Effect of peak to average power ratio (PAPR)	55
	3.5.1	PAPR Performance of OFDM system	58
	3.5.2	2 Technique for PAPR reduction	58
		3.5.2.1 PAPR Reduction with distortion	59
		3.5.2.2 PAPR Reduction without distortion	59
	3.5.3	PAPR reduction effects	60
Chapte	r 4 :]	Modeling of PO-CI/OFDM	62
4.1		introduction	62
4.2	(Carrier Interferometry Codes	62
4.3]	Pseudo-Orthogonal Carrier Interferometry Codes	67
4.4		Modeling of PO-CI/OFDM	72
4.5]	Result and Numerical Analysis	75
	4.5.1	PAPR Performance Evaluation	75
	4.5.2	2 throughput	82
Chapter	5 : C	Conclusion and Future work	85

5.1	Conclusion.	85
5.2	Future work	86
References .		87
List of Publi	shed Papers	91

List of Figures

Figure 1.1	Radio Propagation Effects	3
Figure 1.2	Multipath Signals	4
Figure 1.3	Typical Rayleigh fading while the Mobile Unit is moving	5
Figure 1.4	Multipath Delay Spread	7
Figure 1.5	FDMA showing that the each narrow band channel is allocated to asingle user	10
Figure 1.6	FDMA spectrum, where the available bandwidth is subdivided into narrower band Channels	10
Figure 1.7	TDMA scheme where each user is allocated a small time slot	11
Figure 1.8	Code division multiple access (CDMA)	12
Figure 1.9	Current and future mobile systems. The general trend will be to provide higher data rates and	17
Figure 2.1	greater mobility A broadband channel divided into many parallel narrowband channels	21
Figure 2.2	Concept of OFDM signal (a) Conventional Multi-carrier technique (b) Orthogonal Multi- carrier modulation technique	24
Figure 2.3	OFDM and the Orthogonality principle	26
Figure 2.4	Block diagram of OFDM transceiver	29
Figure 2.5	Example IQ modulation constellation.16-QAM	30
Figure 2.6	Block diagram of serial to parallel converter	32
Figure 2.7	OFDM generation, IFFT stage	33
Figure 2.8	Addition of a guard period to an OFDM signal	35
Figure 2.9	Illustration of cyclic prefix extension	36
Figure 2.10	Function of the guard period for protecting against ISI	38
Figure 2.11	Construction of a RC guard period	40
Figure 3.1	(a)subcarrier without frequency offset	49

Figure 3.2	(b)subcarrier with frequency offset Effect of symbol timing Offset on a subcarrier	51
Figure 3.3	Effect of phase Offset on a subcarrier	52
Figure 3.4	High Peak Appearance on Multicarrier System	50
Figure 3.5	Characteristic of Hadamard and CI Codes on the Envelope of OFDM Signals	60
Figure 4.1	Transmit Envelope of BPSK OFDM with CI Codes	64
Figure 4.2	Transmit Envelope of QPSK OFDM with CI Codes	65
Figure 4.3	Transmit Envelope 16QAM OFDM with CI Codes	60
Figure 4.4	Transmit Envelope of 64QAM OFDM with Cl Codes	67
Figure 4.5	Transmit Envelope of BPSK OFDM with PO-CI Codes	68
Figure 4.6	OFDM transmitter	72
Figure 4.7	(a)PO-CI/OFDM transmitter (b)spreading of symbol k to the N carriers from part(a)	73
Figure 4.8	Result validation for PO-CI/OFDM with 256 subcarriers with the previously published work	
Figure 4.9	in[33] BER performance of PO-CI/OFDM with 256 , 512 and 1024 subcarriers	70 70
Figure 4.10a	(a) PAPR of OFDM versus number of transmission	77
Figure 4.10b	(b) PAPR of PO-CI/OFDM versus number of transmission	78
Figure 4.11	Performance results for PO-CI/OFDM versus OFDM with N=256	79
Figure 4.12	Performance results for PO-CI/OFDM versus OFDM with N=512	79
Figure 4.13	Performance results for PO-CI/OFDM versus CI/OFDM with N=256	81
Figure 4.14	Performance results for PO-CI/OFDM versus CI/OFDM with N=512	81
Figure 4.15	throughput results for PO-CI/OFDM versus CI/OFDM with N=256	83
Figure 4.16	throughput results for PO-CI/OFDM versus CI/OFDM with N=512	84

List of Tables

Table 1.1	Typical attenuation in a radio channel	4
Table 1.2	Cummulative distribution for Rayleigh distribution (Value from)	5
Table 1.3	Typical Delay Spread	8
Table 1.4	Major Mobile Standards in North America	15
Table 1.5	Major Mobile Standards in Europe	16

List of Abbreviations

ADC analog-to-digital converters

ADSL Asymetric Digital Subscriber Line

AMPS Advanced Mobile Phone Service

CAP Carrierless amplitude phase

CDMA Code division multiple access

Cl Carrier Interferometry

COFDM Coded orthogonal frequency division

multiplexing

CP cyclic prefix

DAB digital audio broadcasting

DMT Discrete Multitone

DVB-T digital video broadcasting

EHF Extremely high bands

ETSI European Telecommunications

Standardisation Institute

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

FM Frequency Modulation

GI guard interval

GSM Global System for Mobile

Telecommunications

HDSL High bit rate Digital Subscriber Line

HDTV high definition digital television

HIPERLAN/2 High Performance LAN type2

ICI Inter-Carrier Interference

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

ISDN integrated-services digital network

LO local oscillator

MMAC Multimedia Access communication

PAPR Peak To Average Power Ratio

PO-CI Pseudo-Orthogonal Carrier Interferometry

QOS Quality Of Service

SHF super high frequency bands

TDMA time division multiple access

UHF Ultra High Frequencies

UMTS Universal Mobile Telecommunications

System

VCO voltage controlled oscillator

WWW World Wide Web

List of Symbols

△*f* Change In Source Frequency

*f*_o Source Frequency

v Speed

c Speed Of Light

M number of carriers

T symbol period

 T_s total length of the symbol

 T_G length of the guard period

 T_{FFT} the size of the IFFT

 f_s the sample rate

 $N_{\rm FFT}$ the size of the FFT

 T_{GRC} the length of the RC guard period

 T_{GF} the length of the flat guard period

 p_{sat} Saturation Power

s(t) Multicarrier Symbol

 p_{mean} Average Power

p_o Power Of One Carrier

N Number Of Carriers

A Carrier Amplitude

 α_i Fade Parameter

 ϕ_i Phase Offset

k No. Of symbols

 $R_{1,2}$ Cross Correlation rms