Biological and chemical studies on some microbial control agents and plant extracts against some insect pests

A Thesis submitted

To

The Department of Entomology Faculty of Science, Ain Shams University

For

The award of the Ph.D. Degree (Entomology)

By

Nasr Sobhy Abdel-Fattah Khalil (B.Sc., M.Sc.)

Supervised by

Prof. Dr. Mohamed S. Salama
Prof. Dr. Mohamed S. Hamed
Professor of Molecular Biology
Vice president of Ain shams University
For post Graduate Studies and Research
Prof. Dr. Mohamed S. Hamed
Professor of Entomology
Faculty of Science
Ain shams Univers

Prof. Dr. Mohamed A. Saleh
Professor of Pesticide Chemistry,
Central Laboratory of Agricultural Pesticides,
Agricultural Research Centre,
Prof. Dr. Hesham R. EL-Seedi
Professor of Natural Products
Faculty of Science
Minufiya University

Cairo 2010

Biological and chemical studies on some microbial control agents and plant extracts against some insect pests

Board of Supervision

1- Prof. Dr. Mohamed S. Salama

Professor of Molecular Biology, Vice president of Ain shams University for post Graduate Studies and Research

2- Prof. Dr. Mohamed S. Hamed

Professor of Entomology and toxicology, Faculty of Science, Ain Shams University

3- Prof. Dr. Mohamed A. Saleh

Head Researcher of Pesticide Chemistry, Central Agricultural

Pesticides Laboratory, Agricultural Research Centre

4- Prof. Dr. Hesham R. EL-Seedi

Professor of Natural Products, Faculty of Science, Minufiya University

Cairo 2010

كلية العلوم قسم علم الحشرات

APPROVAL SHEET

Biological and chemical studies on some microbial control agents and plant extracts against some insect pests.

Ph.D. Thesis
BY
NASR SOBHY ABDEL-FATTAH KHALIL
(B.Sc. , M.Sc.)

APPROVED BY:

1- Prof. Dr. Mohamed S. Hamed

Professor of Entomology and toxicology, Faculty of Science, Ain Shams University.

2. Prof. Dr. Sameeh Abd El Kader Mansour

Professor of Environmental Toxicology- National Research Centre- Cairo

3. Prof. Dr. Wedad Ahmed Atwa

Professor of Entomology, Faculty of Science (Girls) – Al-Azhar University.

(Committee in charge)
Date: / /2010

بسم الله الرحمن الرحيم

اقْرَأْ بِاسْمِ رَبِّكَ الَّذِي خَلَقَ ﴿1﴾ خَلَقَ الْإِنسَانَ مِنْ عَلَقٍ ﴿٢﴾ الَّذِي عَلَمَ عَلَمَ عَلَمَ ﴿٢﴾ اللَّذِي عَلَمَ الْأَكْرَمُ ﴿٣﴾ اللَّذِي عَلَمَ بِالْقَلَمِ ﴿٤﴾ عَلَمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ ﴿٥﴾ "صدق الله العظيم"

ABSTRACT

The efficiency of 15 essential oils as repellent against *Ixodes* ricinus (Acari: Ixodidae) nymphs ticks was investigated by laboratory bioassay. The essential oils were obtained by steam distillation (SD) and were analyzed by gas chromatography-mass spectrometry (GC-MS) and their major components were identified. The oils exhibited a diversity of activity and were grouped into four categories according to their repellency effect. Volatile oils of Calendula officinalis, Origanum majorana, Artemisia judaica, Mentha piperita, Conyza dioscoridis and Rosmarinus officinalis showed the most pronounced and strong tick repellency effects observed (82 - 100%). Oils of Ammi majus and Foeniculum vulgare showed very close repellency of about 69% and 70%, respectively. Oils of Nerium oleander, Ricinus Communis., Ammi visnaga, Ocimum basilicum and Lantana camara showed very close and moderate repellency of about (60 – 65%). The last category is the oils of Lawsonia inermis and Chamomilla recutita possessed very weak repellence activity accounted to 58% and 42%, respectively. In a field in Sweden, the tick repellent activity of the highest three oils of M. piperita, C. dioscoridis and R. officinalis were tested by randomised, standardized methodology with concentration half of that used in the Lab., (65mg oil/m²) by cloth-dragging trials. Collected and numbers recorded of I. ricinus nymphs ticks differed significantly between treated cloths and the untreated control. Some oils do represent a possible personal protection measure.

The insecticidal value of oil extracts of castor (*Ricinus communis*) seeds prepared using various solvents e.g. hexane, acetonitrile and methanol were studied against the whitefly, *Bemisia tabaci* (Homoptera: Aleyrodidae) and compared with some formulations based on Azadirachtin (neemix 4.5% EC) and Pyrethrum 5% SC). The crude oils were treated with an emulsifier to facilitate its mix with water. The oils showed insecticidal properties. Mortality of the whitefly, increased with increasing concentrations of castor oil. The lethal dose of the castor oil extracts was less for the immature fly than adult fly. GC/Mass analysis showed that the oils comprised largely of fatty acids and ricinoleic esters content.

Specifications, evaluations and quantifications of *Bacillus* thuringiensis (Bt) as an active ingredient in some microbial control agents currently applied in Egypt were studied using different methodologies by bioassays, electrophoresis and some molecular

techniques (PCR). The bioassays conducted on neonate larvae of cotton leaf worm, *Spodoptera littoralis* based on an artificial diet. The electrphoretic analysis of SDS-Page protein for the samples showed moderate to great differences and similarities between them, depending on the presence and absence of some bands between the samples. Molecular studies by RAPD- PCR technique using six random primers OPA – 01, OPB – 01, OPB – 03, OPC – 01, OPD – 01 and OPD – 03 were used to distinguish any variations or changes between the different strains of these formulations. The studies showed that combination of bioassays, SDS-PAGE and the genetic approach by means of PCR can satisfactory represent evaluations and specifications for the potential of *B. thuringiensis* strains of commercial products.

KEY WORDS: Essential oils, ticks, repellent, toxicity, *Ricinus communis*, *Bemisia tabaci*, *Spodoptera littoralis*, *Bacillus thuringiensis*, Bt formulations, SDS-Page, RAPD- PCR.

CONTENTS

	Page
INTRODUCTION	1
AIMS AND OBJECTIVES	4
• LITERATURE REVIEWI – Chemical, Biological and Toxicological Studies	5
1 – Chemical, Biological and Toxicological Studies	5
1 – Repellency evaluation of some essential oils against the	5
hard ticks Ixodes ricinus (L.).	
1.1 Blood feeding arthropods and ticks	5
1. 2 Ticks life cycle, habitats and behaviors	5
1. 3 Ixodes ricinus (L.)	6
1. 4 Control of ticks	7
1. 5Use of repellents	8
1. 5. 1 Plant-derived natural repellents	8
1. 5. 2 Plant-derived natural repellents for <i>Ixodes ricinus</i>	10
1.5. 3 Some Plant-derived natural repellents	11
1. 5. 4 Synthetic compounds for dermal application	13
I. 6 Mode of action of repellents	20
2- Toxicity of bioinsecticides based on Azadirachtin and	22
Pyrethrum:	
2.1. Azadirachtin	22
2.1.1 - Mode of actions of azadirachtin	23
2.1.2 - Insecticidal effects of azadirachtin	24
2.2 – Pyrethrum	26

2.2.1 - Mode of Action	27
2.2.2 - Insecticidal actions of pyrethrum	27
3. Toxicity and Insecticidal Value of Castor (Ricinus communis)	28
3.1 - Biological activity against housefly and whitefly	28
3.2 – Against other insects and pests	29
3.3 - Other insecticidal actions of <i>Ricinus communis</i>	36
II- Biogical, toxicological and Molecular studies	39
1. Microbial insecticides based on bacterium <i>Bacillusthuringiensis</i>	39
1.1 -What is the Bt	39
1.2 -How Bt works	40
1.3 - Habitats of Bt	40
1.4 - Classification of Bt subspecies	41
1.5 - Insecticidal Toxins produced by Bacillus thuringiensis	42
1.6 - Commercial products	44
2. Historical aspects of the quantification of the active ingredient percentage <i>bacillus thuringiensis</i> for products.	46
3 - Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS)- PAGE)	48
3.1- SDS-Protein complexes : A refinement of the model	51
III – Molecular Studies	52
1. polymerase chain reaction (PCR)	

1.1 - PCR-based identification of pesticidal crystal genes	52
1.2 -Use of PCR for the prediction of insecticidal activity	53
1.3 - Limitations of insecticidal activity prediction by PCR	54
• MATERIALS AND METHODS	56
1- Repellency evaluation of some essential oils against ticks	56
1.1- Plant oils	56
1.2- Identification of compounds	56
1.3- Laboratory bioassays (Tick bioassay)	57
1.5- Field trial	61
1. 6- Statistical analysis	63
2 Toxicity of Azadirachtin, Pyrethrum and Ricinus communis oil against the whitefly (Bemisia tabaci)	64
2. 1. Laboratory strain	64
2. 2. Bioassay	65
2. 3. Commercial botanical formulations used:	65
3. Biological, toxicological and molecular biology studies of Bt formulations	66
3.1 -Biology and collection of Spodoptera littoralis (Boisd)	66
3.2. Bt formulations used	69
3.3. SDS-polyacrylamide gel	76
3.3.1.Molecular characterization	79
3.4. RAPD – PCR	82

• PRESENT INVESTIGATIONS &	87
EXPERIMENTAL RESULTS	
1 – Repellency evaluation of some essential oils against the	87
hard ticks Ixodes ricinus (L.)	
2. Toxicity of Azadirachtin, Pyrethrum and Ricinus	114
3. Biological, toxicological and molecular biology studies of Bt formulations	118
3.1. Toxicological of Bt formulations	118
3.2. Microscopic examinations	120
3.3. Seperation of protein patterns using SDS-PAGE	122
3.4. Molecular studies	132
3.4.1. Primer OPA-01	132
3.4.2. Primer OPB-01	133
3.4.3.Primer OPB-03	134
3.4.4. Primer OPC-01	135
3.4.5. Primer OPD-01	136
3.4.6. Primer OPD-03	137
DISCUSSION AND CONCLUSIONS	142
I. Biological, chemical and toxicological studies:	142
1. Repellency evaluation of essential oils	142
II. Toxicology of castor oil against the whitefly <i>Bemisia</i> tabaci	155

III. insecticidal activity of the bacterial formulations	157
Molecular studies (PCR)	167
SUMMARY	170
LITERATURE CITED	177
APPENDIXES	203
Appendix (1):Essential oils repellency calculations	203
Appendix (2): field trials	236
Appendix (3): Essential oils major products with their	240
Appendix (4): mortality percentage % and concentrations for castor oils and the botanical commercial products	248
Appendix (5): Concentrations and mortalities for Bt samples	258
Appendix (6): Amplified fragments sizes resulting from PCR performed with the Bt samples strains.	261

LIST OF FIGURES

Fig. number	Fig. title	Page
Fig. (1)	Unfed of nymph tick of the Ixodes ricinus Species.	59
Fig. (2)	Laboratory bioassays for repellent activity based on vertical bioassay, one unfed nymphs <i>I. ricinus</i> in a Falcon TM vial made of transparent plastic(50-ml centrifugal tube (116 X 29 mm.).	60
Fig. (3)	Cloth-dragging trials under field conditions using white flannel cloth blanket (1 m²) attached to a 1 m long wooden pole to both ends.	62
Fig. (4)	Bioassay Procedures followed for testing Bt formulations.	73
Fig.(5)	Survival of cotton leafworm Spodoptera littoralis on control artificial diet where there is no mortality observed.	74
Fig. (6)	Survival of cotton leafworm <i>Spodoptera littoralis</i> on artificial diet contaminated by bacterial formulations solns. where high mortality observed.	75
Fig.(7)	Diagram of Ammi majus, Essential oil major products.	94
Fig. (8)	Diagram of Ammi visnaga, Essential oil major products.	95
Fig. (9)	Diagram of Artemisia helpa alpa Essential oil major products.	96
Fig. (10)	Diagram of Calendula officinalis Essential oil major products.	97
Fig. (11)	Diagram of Conyza dioscoridis Essential oil major Products.	98
Fig. (12)	Diagram of Foeniculum vulgare Essential oil major products.	99

Fig. (13)	Diagram of Lantana camara Essential oil major products.	100
Fig. (14)	Diagram of Lawsonia inermis Essential oil major products.	101
Fig. (15)	Diagram of <i>Matricaria recutita (Chamomile)</i> Essential oil major products.	102
Fig. (16)	Fig. (10): Diagram of <i>Mentha piperita</i> Essential oil major products.	103
Fig. (17)	Fig. (11): Diagram of <i>Nerium oleander</i> Essential oil major products.	104
Fig. (18)	Diagram of Ocimum basilicum Essential oil major products.	105
Fig. (19)	Diagram of Origanum majorana Essential oil major products.	106
Fig. (20)	Diagram of <i>Ricinus Communis</i> Essential oil major products.	107
Fig. (21)	Diagram of Essent Rosmarinus officinalis ial oil major products.	108
Fig. (22)	Mean numbers of <i>I. ricinus</i> nymphs recorded on a cloth treated with 0.065 mg/cm2 essential oil and on a control) cloth during 1 day in Sept., 2009.	110
Fig. (23)	Mean numbers of <i>I. ricinus</i> nymphs recorded on a cloth treated with 0.065 mg/cm2 <i>Conyza Dioscoridis</i> essential oil and on a control cloth during 1 day in Sept., 2009.	111
Fig. (24)	Mean numbers of <i>I. ricinus</i> nymphs recorded on a cloth treated with 0.065 mg/cm2 <i>Mentha piperita</i> essential oil and on a control cloth during 1 day in Sept., 2009.	112
Fig. (25)	Statostical analysis for the field trials data for the most active 3 substances. It shows one way Anova: Kruskalwallis ANOVA by Ranks; no ticks (field) Independent.	113

Fig. (26)	Spores and crystals observed by microscopic examinations for sample number 1 which showed high toxicity, and as shown numerous numbers appeared.	120
Fig. (27)	Spores and crystals observed by microscopic examinations for sample number 7, showed considerable numbers but less than that of high toxicity samples as appeared.	121
Fig. (28)	Electrophoresis (SDS - Page) protein patterns for the crystal protein extracted from the samples directly.	123
Fig. (29)	Electrophoresis (SDS - Page) protein patterns for protein of the various Sporulated bacterial of the different samples strains.	127
Fig. (30)	Amplified fragments sizes resulting from PCR performed with the samples strains and the primer OPA-1. Molecular masses given in bp.	132
Fig. (31)	Amplified fragments sizes resulting from PCR performed with the samples strains and the primer OPB-1. Molecular masses given in bp.	133
Fig. (32)	Amplified fragments sizes resulting from PCR performed with the samples strains and the primer OPB-3. Molecular masses given in bp.	134
Fig. (33)	Amplified fragments sizes resulting from PCR performed with the samples strains and the primer OPC-1. Molecular masses given in bp.	135
Fig. (34)	Amplified fragments sizes resulting from PCR performed with the samples strains and the primer OPD-1. Molecular masses given in bp	136
Fig. (35)	Amplified fragments sizes resulting from PCR performed with the samples strains and the primer OPD-3. Molecular masses given in bp	137