Infective Endocarditis at Tertiary Health Care Units

Thesis
Submitted for partial fulfillment of Master Degree In
Clinical and Chemical Pathology

By
Omaima Ahmed El Sayed
M.B., B.CH
Faculty of Medicine - Cairo University

Under Supervision of

Professor/ Hadia Hussein Bassim

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Professor/ Manal Abd El Alim Abd El Sattar

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Doctor/ Hala Mahmoud Hafez

Lecturer of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Contents

	Page
Introduction	1
Aim of the work	4
REVIEW OF LITERATURE	
Historical perspective	5
Pathogensis	5
Epidemiology	8
Incidence	8
Sex	8
Age	8
Risk factors	9
Recurrence	13
Mortality	13
Causative organisms	14
Types	23
Complications	26
Diagnosis of IE	29
Clinical manifestation	29
Laboratory diagnosis	32
Echocardiography	47
Duke's criteria for diagnosis of IE	48
Treatment	52
Prevention	54
SUBJECTS AND METHODS	57
RESULTS	61
DISCUSSION	73
SUMMARY	77
CONCLUSION	
REFERENCES	
ARARIC SUMMARY	

List of abbreviations

AHA : American Heart Association

AO : Acridine orange

BCS-RCP : British Cardiac Society and the Royal

College of Physicians of London

BSAC : British Society of Antimicrobial

Chemotherapy

CFUs : Colony-forming units CHD : Congenital heart disease

CoNS : Coagulase negative Staphylococci

CRP : C-reactive protein

DNA : Deoxyribonucleic acid

E.coli : Escherichia coli

EDTA : Ethylene diamine tetraacetic acid

EM : Electron microscope

ESC : European Society of Cardiology ESR : Erythrocyte sedimentation rate

ESRD : End-stage renal disease

F : Females

FISH : Fluorescent in situ hybridization

HACEK : Haemophilus species, Actinobacillus

actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella

kingae

HF : Heart failure

HIV : Human immunodefiency virus

IAs : Infectious aneurysmsICU : Intensive care unitIE : Infective endocarditis

M : Males

MRSA : Methicillin Resistance Staph. aureus

N : Number

NVE : Native valve endocarditis

NBTE : Non-bacterial thrombotic endocarditis

PAS : Periodic acid-Schiff

PCR : Broad-range polymerase chain reaction

PVE : Prosthetic valve endocarditis

PCT : Serum procalcitonin RNA : Ribonucleic acid SD : Standard deviation

SPS : Sodium polyanetholsulphonate

Staph. : Staphylococcus Strept. : Streptococcus

TFA : Tissue factor activity

TTE : Transthoracic echocardiography

US : United States

List of Tables

Table	Title					
1	Endocarditis caused by other fastidious and/or					
	rare bacteria					
2	Agents of blood culture-negative endocarditis					
3	Duke classification for diagnosis of IE					
4	Definitions of major and minor criteria for the	50				
	diagnosis of Infective Endocarditis					
5	Proposed additional minor criteria for the Duke	51				
	classification					
6	Proposed antibiotic regimens for initial	53				
	empirical treatment of IE					
7	Bacterial endocarditis prophylaxis protocol	56				
8	The descriptive statistics of the patients	62				
9	Age and sex distribution of patients with IE	63				
10	The Causative microorganisms according to the	67				
	nature of the valve					
11	The descriptive statistics of negative, positive	68				
	acridine orange and positive blood cultures					
12	Results of antimicrobial susceptibility for each organism.	71				

List of Figures

Fig.	Title				
1	Early steps in bacterial valve colonization.				
2	Cutaneous manifestations in IE				
3	Whipple's disease endocarditis showing foamy				
	PAS-positive macrophages				
4	Warthin-Starry silver stain of a Bartonella	42			
	quintana-infected valve				
5	Electron microscope showing Tropheryma	45			
	whipplei on valvular tissue				
6	Age and Sex distribution of patients with IE	63			
7	Percentage of patients of PVE and NVE	64			
8	Percentage of patients of IE in relation to	65			
	various risk factors				
9	pie chart showing the causative organisms of IE	66			

List of Photos

Photo	Title	Page
1	Results of Acridine Orange	69
2	Results of Acridine Orange	69

يعد إلتهاب الشغاف الخمجى للقلب وصمامات القلب مرض خطير يؤدى الى الوفاة. لذا يجب سرعة تشخيص هذا المرض وعلاجه.

هدف هذه الدراسة إلى التعرف على الديكروبات بة لإلتهاب الشغاف الخمجى و تحديد نمط المضادات الحيوية اللازمة و بيان دور صبغة الأكريدين البرتقالية في حالات مزارع الدم السالبة.

ت هذه الدراسة في مستشفيات جامعة عين شمس و معهد القلب يوليه سبعين

هاب الشغاف الخمجى الذين تم تشخيصهم بالفحص الاكلينيكي والموجات الفوق صوتية على القلب بأنهم حالات اصابة بهذا

الرجال أكثر عرضة من السيدات
(:) وأن أكثر معدل الإصابة يتراوح بين سن (-)
وأن اقل معدل يتراوح بين سن . لوحظ أيضا أهم العوامل المسببة لحدوث هذا المرض هي الحمى الروماتيزمية للقلب تليها تغيير , ن أكثر الصمامات تأثرا هو

وجد ان عدد حالات مزارع الدم الايجابية هو حاله وأن أكثر الميكروبات

المسببة هي (Staph.aureus).

التهاب الشغاف الخمجي للقلب على صمام طييعي قد مثل (%)

دما coagulase negative Staph. Staph. aureus

أكثر الميكروبات المسببة للمرض بالتساوى . التهاب الشغاف سبق تغييره قد مثل (%)

الميك هي

.coagulase negative Staph تليها Staph. aureus

و وجد أن عدد حالات مزارع الدم السلبية هي ٢٠حاله وهي تمثل (٢٨,٦٧%) تم فحص هذه الحالات السلبيه بصبغة الاكريدين ووجد ان عدد ثلاثة حالات بهم ميكروب وهو يمثل ميكروب وهو يمثل (١٥%). لذا ينصح بإستخدام صبغة الأكريدين البرتقالية كطريقة سهلة وسريعة في حالات مزارع الدم السلبية.

Acknowledgement

First of all, thanks to ALLAH for helping and guiding me in accomplishing this work and for everything else I have.

I wish to express my deepest gratitude and appreciation to **Prof. Dr. Hadia Hussein Bassim,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her help in choosing the topic of this study and for her valuable supervision, guidance.

I wish to express my deep gratitude and respect for **Prof. Dr. Manal Abd Elalim Abd El Sattar**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her good support, supervision and help during this work.

Also, I wish to express my gratitude to **Dr. Hala Mahmoud Hafez**, Lecturer of Clinical and Chemical

Pathology, Faculty of Medicine, Ain Shams University,
for her valuable instructions and support.

I would like also to thank my whole family and my colleagues for their kindness, support and much needed encouragement.

INTRODUCTION

Infective endocarditis (IE) is a non-contagious infection of the lining of the heart chambers and heart valves, caused by bacteria, fungi, or other infectious agents (Millar and Moore, 2004). It remains a relatworldwide, with ively rare disease estimated an incidence between 3 and 10 per 100,000 per year (Habib et al., 2009). Mortality varies according to the infecting organism (Staphylococcus aureus 30-46%, viridans Streptococci 4-16%, fungal infections over 50%) and is higher when infection affects a prosthetic valve or is complicated by congestive heart failure, abscess formation, or a neurological event (Mylonakis and Calderwood, 2001; Cabell et al., 2002).

The risk of infection of heart valves in persons predisposed to acquiring IE increases with the following conditions: congenital heart disease, rheumatic fever, major dental treatment, open heart surgery, and genitourinary procedures. New evidence is growing that changes in social behavior, such as an increase in the incidence of body piercing, excessive alcohol consumption, and the use of intravenous self-administered illicit drugs may also predispose a susceptible person to an increased risk of acquiring endocarditis (Millar and Moore, 2004).

The disease has been most commonly seen in older age groups with a predominance of male patients and an increased incidence of acute cases caused by virulent organisms such as Staph. aureus, Gram-negative bacilli and fungi (Nashmi and Memish, 2007).

The diagnosis of infective endocarditis requires a multifaceted approach involving clinical suspicion and

examination, laboratory investigation by means of inflammatory markers and microbiological analysis, and imaging with echocardiography (**Beynon**, et al., 2006).

echocardiography Transthoracic noninvasive and has excellent specificity for vegetations (98%) (Shively et al., 1991). However, transthoracic echocardiography may be inadequate in up to 20% of adult patients because of obesity, chronic obstructive pulmonary disease, or chest-wall deformities; the overall sensitivity for vegetations may be less than 60 to 70% (Werner et al.. **1996**). On the other transesophageal echocardiography, although more costly and invasive, increases the sensitivity for detecting vegetations to 75-95% while maintaining the specificity to 85-98% (Werner et al., 1996; Heidenreich et al., 1999).

Given the need for prolonged antibiotic treatment IE, positive microbiological patients with and sensitivities are vitally important successful management. Current guidelines recommend that three sets of blood cultures are drawn one hour apart before the introduction of antibiotic (Horstkotte et al., 2004). However, Blood cultures are negative in 2.5-31% of cases of endocarditis, often delaying diagnosis and the start of treatment with profound impact on clinical outcome. Negative cultures commonly related most to the administration of antibiotics (Hoen et al., 2002), but they may also be associated with fastidious pathogens, Legionella, Coxiella, HACEK including the species. (Haemophilus Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae), and fungi such as Candida, Histoplasma, and Aspergillus species (Beynon et al., 2006).

Introduction and Aim of The Work

Acridine Orange (AO) stain is rapid, inexpensive method in detection of culture negative fastidious endocarditis. As it could detect microorganisms and candida which are difficult to be detected by Gram stain or when standard media are used (Adler et al., 2003).

Serological assay can detect Coxiella, Brucella, Bartonella, or Chlamydia. Polymerase chain reaction can be used to identify unculturable organisms in excised vegetations or systemic emboli (Goldenberger et al., 1997). Specific fluorescent labeled antibody staining and electron microscopy, should be considered in all cases where cultures have tested negative for IE (Prendergast, 2002).

AIM OF THE WORK

The aim of the present study was to identify the microbial causes of IE, determine their antimicrobial susceptibility pattern, and to evaluate the role of the acridine orange stain in detecting the presence of microorganisms in cases of blood culture negative endocarditis.