Effect of Chronic Pretreatment with β-Blocker on No-Reflow Phenomenon in Diabetic Patients with Acute ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention

Thesis Submitted as Partial Fulfillment for Degree of Master of Cardiology

Presented by;

Dr. Ali Mohammed Kareem Jabari M.B.Ch.B, F.I.B.M.S

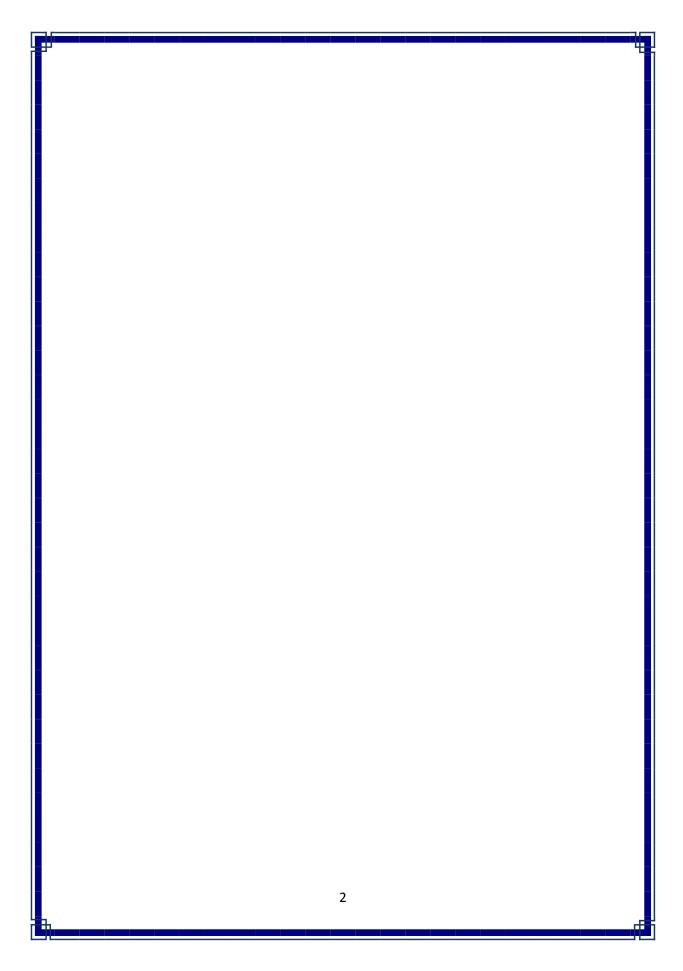
Supervised by;

Dr. Ahmad Shawky El-Serafy

M.B.Ch.B, MD

Assistant Professor of Cardiology

College of Medicine / Ain Shams University


&

Dr.Hossam El-deen Zaki El-Sayed

M.B.Ch.B, MD, MRCP

Lecturer of Cardiology

College of Medicine / Ain Shams University

Effect of Chronic Pretreatment with β-Blocker on No-Reflow Phenomenon in Diabetic Patients with Acute ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention

Thesis Submitted as Partial Fulfillment for Degree of Master of Cardiology

Presented by;

Dr. Ali Mohammed Kareem Jabari M.B.Ch.B, F.I.B.M.S

Supervised by;
Dr. Ahmad Shawky El-Serafy
M.B.Ch.B, MD
Assistant Professor of Cardiology
College of Medicine/Ain Shams University

&

Dr. Hossam El-deen Zaki El-Sayed M.B.Ch.B, MD, MRCP Lecturer of Cardiology College of Medicine / Ain Shams University

بسم الله الرَّحمن الرَّحيم

صَدَقَ اللهُ العَظيم

(سورة طه : من الآية 114)

This work is dedicated

To

The Soul of my Mother and Father

Acknowledgement

The ability to achieve this work is attributed first and foremost to Allah, the Gracious, who helped me to accomplish this endeavor, and for granting me with a teamwork that, without their magnificent effort, this work would have never been brought to light.

My deepest appreciation and everlasting thankfulness goes to Dr. Ahmad Shawky El-Serafy, Assistant Professor of cardiology at Ain Shams University, for his support, supervision and sincere unlimited advice which are at the very "heart" of this work, and was incredibly devoted to making this study a reality. It was an honor to work under his supervision.

I am grateful to Dr. Hossam El-deen Zaki El-Sayed, lecturer of cardiology at Ain Shams University, who deserves utmost recognition for his outstanding effort and professional expertise.

Last, but not least, I lack the right words to express the extent of my gratitude to my wife and my children for their unlimited support and patience.

Ali Jabari

List of Contents

Subject		Page
List of tables		ii
List of figures		iv
List of abbreviations		V
Introduction		vi
Aim of the work		viii
Review of literature:		
Chapter 1:	ST-segment Elevation Myocardial	1
	Infarction	
Chapter 2:	No-Reflow Phenomenon	23
Chapter 3:	Beta Blocker	40
Patients and methods		54
Results		62
Discussion		87
Study limitations		92
Conclusions		93
Recommendations		94
Summary		95
References		98
Arabic Summary		116

List of tables

Table (1)	Contraindications and cautions for	5
	fibrinolytic therapy in STEMI	
Table (2)	Electrocardiographic Manifestations of	8
	MI	
Table (3)	Killip classification in Acute MI	10
Table (4)	TIMI risk score	11
Table (5)	Indications of Primary PCI for	16
	myocardial reperfusion in STEMI	
Table (6)	Management and revascularization after	20
	fibrinolysis	
Table (7)	Thrombolysis in Myocardial Infarction	24
	(TIMI) flow grading	
Table (8)	Angiographic Myocardial blush Grade	25
Table (9)	The Physiological processes mediated	41
	through β-receptor activation by	
	epinephrine and norepinephrine	
Table (10)	Classification of β-blockers	43
Table (11)	Patient characteristics of the study	64
	population	
Table (12)	Vital data of the study population	65
Table (13)	Killip class of the patients	66
Table (14)	Mean blood glucose of the study	67
	population	
Table (15)	Diabetes mellitus-related data	67
Table (16)	β -blocker drugs used by the β -blocker	68
	group	
Table (17)	Risk factors of the study population	69
Table (18)	Prevalence of smoking among the	70
	patients	
Table (19)	Infarct-Related Artery of the study	71
	population	

T-1-1- (20)	I. f D. 1	70
Table (20)	Infarct-Related Artery of the study	72
	population	
Table (21)	The TIMI Flow of the study population	73
Table (22)	LVEF post-primary percutaneous	74
	coronary intervention	
Table (23)	Baseline demographics on admission in	75
	each group	
Table (24)	Vital data of the patients stratified by	76
,	Beta-blocker pre-treatment	
Table (25)	Distribution of Killip class of the	77
	patients in each group	
Table (26)	Diabetes Mellitus related data of the	78
1 4010 (20)	patientsin each group	70
Table (27)	Risk factors of CAD among the patients	79
	of each group	19
T-1-1- (20)	E 1	90
Table (28)	Angiographic data in each group	80
Table (29)	Baseline demographic characteristics of	82
	the patients stratified by angiographic	
	reflow	
Table (30)	Clinical characteristics of the patients	83
	stratified by angiographic reflow	
Table (31)	Risk factors of CAD among the patients	84
	stratified by angiographic reflow	
Table (32)	Angiographic and Post-PCI	85
(-)	echocardiographic characteristics of the	
	patients stratified according to final	
	reflow	
Table (33)	Independent predictive factors for no-	86
	reflow phenomenon	00
	Terrow bijenomenon	

List of Figures

Figure (1)	Organization of STEMI pre- and in- hospital management and reperfusion strategies within 12 hours of first medical contact with ideal time interval for interventions	14
Figure (2)	Effect of duration of preceding myocardial ischemia on mechanism of no-reflow	29
Figure (3)	Interventional no-reflow following angioplasty to non-acutely ischemic myocardium is induced by distal coronary embolization of plaque components	30
Figure (4)	Mechanisms contributing to reperfusion no-reflow in the setting of primary angioplasty for acute myocardial infarction	31
Figure (5)	Device strategies for prevention of distal coronary Microembolization following PCI	36
Figure(6)	Thrombus aspirated from an occluded coronary artery in a patients with acute myocardial infarction	38
Figure(7)	Pharmacological effects of β-blockers on cardiovascular system	40
Figure (8)	distribution among the population study	63
Figure (9)	Incidence of no-reflow phenomenon in both study groups	81

List of Abbreviations

AMI	Acute Myocardial Infarction
CABG	Coronary Artery Bypass Grafting.
CAD	Coronary Artery Disease
CHF	Congestive Heart Failure
CE-MRI	Contrast-Enhanced Magnetic Resonance
	Imaging
COPD	Chronic Obstructive Pulmonary Diseases
cTnI	Cardiac Troponin I
cTnT	Cardiac Troponin T
CVD	Cardiovascular Disease
CXR	Chest X-Ray
EPD	Distal Embolic Protection Devices
DM	Diabetes Mellitus
ECG	Electrocardiography
GPIIb-IIIa	Glycoprotein IIb/IIIa
HDL	High-Density Lipoprotein.
IRA	Infarct-Related Artery
LDL	Low-Density Lipoprotein
LV	Left Ventricle.
LBBB	Left Bundle-Branch Block
MCE	Myocardial Contrast Echocardiography
MI	Myocardial Infarction.
MVO	Microvascular obstruction
PCI	Percutaneous coronary intervention
RAAS	Renin-Angiotensin-Aldosterone System
STEMI	ST Segment Elevation Myocardial Infarction
TIMI	Thrombolysis In Myocardial Infarction
VF	Ventricular Fibrillation

Introduction

Primary percutaneous coronary intervention (PCI) in patients with ST-elevation myocardial infarction (STEMI) has been used as an important therapeutic method since the last decade of the 20th century and has gradually become the method of choice in many medical centers. Various studies have shown that primary PCI is associated with lower rates of mortality, reinfarction and cerebral hemorrhage in comparison with thrombolytic treatments. Although shown to be extremely important in maintaining epicardial artery patency in acute myocardial infarction (AMI), the attention has shifted recently from epicardial artery patency to the status of the microvasculature. 2

Previous studies have shown that 5–30% of patients treated with primary PCI fail to achieve thrombolysis in myocardial infarction (TIMI) flow grade 3 after successful opening of the artery without angiographic evidence of the mechanical obstruction. This phenomenon is deemed as noreflow, which determines the prognosis in patients after AMI.³

Several mechanisms responsible for no-reflow have been identified in experimental models, including extravascular compression, microvascular vasoconstriction, and platelet/leukocyte capillary plugging.⁴

Previous evidence suggests that Beta blockers have multiple favorable effects on the vascular system not directly related to their effect on blood pressure.⁵

Clinically, no-reflow is important as it predicts a poorer outcome and is associated with ongoing symptoms and persistent electrocardiographic (ECG) changes. In comparison to patients attaining TIMI 3 flow, patients with no-reflow have an increased incidence of ventricular arrhythmias, early congestive cardiac failure, cardiac rupture and cardiac death. As such, it is of paramount importance to consider strategies to prevent the occurrence of no-reflow phenomenon. 6-8

However, to the best of our knowledge, there is insufficient data regarding the effects of prior Beta blocker use on coronary blood flow after primary PCI in patients with AMI.

Aim of the study

The aim of this study is to test the hypothesis that Beta blocker treatment before admission would have beneficial effects on the development of the no-reflow phenomenon after acute myocardial infarction.

Review of Literature

Chapter 1

ST-segment Elevation Myocardial Infarction

Definition

Myocardial infarction, from pathologic point of view, is myocyte cell death, usually due to prolonged myocardial ischemia.⁹

STEMI is a clinical syndrome defined by characteristic symptoms myocardial ischemia in association with persistent electrocardiographic ST elevation and subsequent release of biomarkers of myocardial necrosis. Diagnostic ST elevation in the absence of left ventricular (LV) hypertrophy or left bundle-branch (LBBB) is defined by the European Society of Cardiology/ACCF/AHA/World Heart Federation Task Force for the Universal Definition of Myocardial Infarction as new ST elevation at the J point in at least 2 contiguous leads of ≥ 2 mm (0.2 mV) in men or $\geq 1.5 \text{ mm}$ (0.15 mV) in women in leads V2-V3 and/or of ≥ 1 mm (0.1 mV) in other contiguous chest leads or the limb leads. The majority of patients will evolve ECG evidence of Q-wave infarction. New or presumably new LBBB has been considered a STEMI equivalent.¹⁰

It is a life threatening event and a true medical emergency. The risk of morbidity and mortality associated with STEMI increases