NUMERICAL INVESTIGATION OF SMOKE MANAGEMENT IN AIRPORT INTERNATIONAL ARRIVALS HALL

By

Eng. Mohamed Karam Ali Hassan Fayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

NUMERICAL INVESTIGATION OF SMOKE MANAGEMENT IN AIRPORT INTERNATIONAL ARRIVALS HALL

By

Eng. Mohamed Karam Ali Hassan Fayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

In

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil Prof. Dr. Ahmed A. Medhat Ahmed

Professor of Mechanical Power Engineering - Cairo University Professor of Mechanical Power Engineering – Housing & Building National Research Center

Dr. Esmail Mohamed Ali El-Bialy

Assistant Professor of Mechanical Power Engineering - Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

NUMERICAL INVESTIGATION OF SMOKE MANAGEMENT IN AIRPORT INTERNATIONAL ARRIVALS HALL

By

Eng. Mohamed Karam Ali Hassan Fayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil

Thesis Advisor and Member

Professor of Mechanical Power Engineering - Cairo University

Prof. Dr. Mostafa Abd El-Hamid Taha Rizk

Internal Examiner

Professor of Mechanical Power Engineering - Cairo University

Prof. Dr. Osama Ezzat Abd El-Latef

External Examiner

Head of Mechanical Power Engineering Department –Shoubra- Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer: Mohamed Karam Ali Fayed

Date of Birth: 24 / 08 /1989 Nationality: Egyptian

E-mail: eng.mohamedkaram1989@gmail.com

Phone.: 02-01110404726

Address: 10 New Nasr Buildings-Mokattam-Cairo

Registration Date: 01 / 10 / 2012

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil

Prof. Dr. Ahmed A. Medhat Ahmed (Professor of Mechanical Power

Engineering, Housing & Building National Research Center)

Dr. Esmail Mohamed Ali El-Bialy

Examiners: Prof. Dr. Essam E. Khalil

Prof. Dr. Mostafa Abd El-Hamid Taha

Prof. Dr. Osama Ezzat Abd El-Latef (Head of Mechanical Power Engineering, Faculty of Engineering in Shoubra, Benha University)

Title of Thesis: Numerical Investigation of Smoke Management in Airport

International Arrivals Hall

Key Words: Smoke, HRR Effect, Fire Location Effect

Summary:

The smoke resulted from fire has a fatal effect on the occupants. The toxic products resulted from fires consist of narcotic components (carbon monoxide, hydrogen cyanide) and irritant (organic smoke products and acid gases HCL) which can cause incapacitation, death or disorientation. The effect of toxicity depends on length of exposure and the concentration. Numerical investigation of smoke propagation in Hurghada airport international arrivals hall. The investigation of HRR effect, fire location effect and smoke extraction vent location effect on the height of smoke layer, evacuation time, CO concentration, visibility and temperature. Besides the investigation of passenger's number effect on evacuation time. Fire Dynamic Simulator V 6.1.2 is a powerful tool used to simulate 8 case studies in Hurghada airport international arrivals hall with main dimensions of (200 X 5 X 3) m. The fire is caused by an accidental fire in hand bags. FDS is validated with experiment conducted by Huo. It shows an acceptable agreement with available experimental data. Case 7 is the best case because it has the best tenability conditions (evacuation time, visibility, smoke layer height, carbon monoxide concentration and smoke layer temperature) and ensures safe evacuation for passengers and case 5 is the worst case because it has the worst tenability conditions (evacuation time, visibility, smoke layer height, carbon monoxide concentration and smoke layer temperature) and does not ensure safe evacuation for passengers (3 dead passengers) when the passenger's number is 1350. Case 8 is the best case because it ensures safe evacuation for passengers when the passenger's number is 500.

ACKNOWLEDGMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for his generousness and support through all my life.

I would like to thank Prof. Dr. Essam E. Khalil Hassan Khalil, Prof. Dr. Ahmed A. Medhat Ahmed and Dr. Esmail Mohamed Ali El-Bialy for their guidance and unremitting encouragement. I am grateful to them, and to all my respectful professors, for mentoring me throughout my undergraduate and graduate study.

I extend my gratitude to Eng. Osama Selim, Eng. Mohamed Ekram, Eng. Anas Mohamed and Eng. Hossam Khairy for their valuable suggestions and noteworthy discussions and Mr. Yasser Rashad for his guidance.

Finally, I owe a lifelong debt to my parents, my sister and my brothers for their motivation through finishing this thesis and their patience and care and for maintaining a perfect environment for study and research.

TABLE OF CONTENTS

ACKNOWLEDGMENT
NOMENCLATURExiii
Greek Letters xiv
Superscripts and Subscriptsxv
Abbreviationsxv
CHAPTER 1
1.1 General
1.2 Firefighting procedure
1.3 Objectives of smoke management system
1.3.1 Hazards of smoke
1.3.2 The purpose of buildings ventilation
1.4 Plugholing
1.5 Backdraft
1.6 Present work
CHAPTER 2
2.1 The effect of water mist on smoke flow, temperature, species concentrations and smoke visibility:
2.2 The Influence of emergency effect on evacuation, smoke flow concentration of CO and CO2 and temperature distribution:
2.3 The effect of different ventilation modes in case of a train fire in a subway station on the temperature and visibility
2.4 The effect of fire smoke on the human body injury29
2.5 The influence of metro train length and ventilation velocity on smoke back
layering33

2.6 The Effect of fire location	41
CHAPTER 3	45
3.1 Governing Equations	45
3.1.1 Continuity Equation	45
3.1.2 Momentum Equation	45
3.1.3 Energy Equation	46
3.1.4 Equation of State	46
3.2 FDS Description	46
3.2.1 Hydrodynamic Model	47
3.2.2 The Model of Combustion	47
3.2.3 Transport of Radiation	47
3.3 Visibility	47
3.4 Large Eddy Simulation (LES)	48
3.5 Evacuation of Agents	48
3.5.1 Human Movement Model	49
3.5.2 Human and Fire Interaction	50
CHAPTER 4	51
4.1 Hurghada airport international arrivals hall model description:	51
4.2 Grid sensitivity:	53
4.3 Simulation cases: -	54
4.4 Validation process: -	55
4.5 The measured parameters:	56
4.6 The simulation of the FDS model:	56
4.7 The results of the FDS validation: -	57
CHAPTER 5	58

5.1 HRR effect58
5.1.1 Effect on visibility
5.1.2 Effect on temperature
5.1.3 Effect on CO concentration
5.1.4 Effect on smoke layer height71
5.1.5 Effect on evacuation
5.2 Effect of fire source location
5.2.1 Effect on visibility74
5.2.2 Effect on temperature
5.2.3 Effect on CO concentration
5.2.4 Effect on smoke layer height
5.2.5 Effect on evacuation
5.3 Effect of smoke extraction vent location
5.3.1 Effect on visibility91
5.3.2 Effect on temperature96
5.3.3 Effect on CO concentration
5.3.4 Effect on smoke layer height
5.3.5 Effect on evacuation
CHAPTER 6
6.1 CONCLUSIONS 107
6.2 Recommendations for future work
References

LIST OF TABLES

Table 2.1: List of results of water mist tests in traffic tunnel area. [10]	11
Table 2.2: Summary of different ventilation modes. [19]	22
Table 2.3 The fire condition to simulate. [22]	29
Table 2.4: The thermal properties of material. [23]	33
Table 2.5: The detailed information of simulation cases. [23]	34
Table 2.6: The summary of smoke back-layering length (m). [23]	35
Table 2.7: The dimensionless heat release rate Q_T^* under different conditions.	[23]
	38
Table 2.8: The dimensionless smoke back-layering length lu*. [23]	39
Table 4.1: Simulation cases	54

LIST OF FIGURES

Figure 1.1: Firefighting procedure [4]
Figure 1.2: Smoke management concept [5]
Figure 1.3: Tenability criteria for no exposure [6]
Figure 1.4: Tenability criteria for short exposure [6]
Figure 1.5: Tenability criteria for long exposure [6]
Figure 1.6: Natural ventilation system [7]6
Figure 1.7: Mechanical ventilation system [7]6
Figure 1.8: Plugholing phenomenon [8]
Figure 2.1: Experimental Model Facilities. [10]9
Figure 2.2: Fire Sources. [10]
Figure 2.3: Sketch of the thermocouples installations. [10]
Figure 2.4: Average Temperature Variations. [10]
Figure 2.5: Temperature Variations In Test SF1. [10]
Figure 2.6: Temperature Variations in Test LF1. [10]
Figure 2.7: CO2 and O2 Variations in Platform in Test SF1 and LF2. [10] 14
Figure 2.8: CO and visibility variations in platform. [10]
Figure 2.9: Mass flow rate variations with temperature (T _{cw}). [10]
Figure 2.10: (a) tunnel model; (b) train model. [18]
Figure 2.11: (a) temperature distribution: 60s; (b) temperature distribution: 120s. [18]
Figure 2.12: CO2 distribution in the car: (a) 60s; (b) 120s. [18]
Figure 2.13: CO distribution in the car: (a) 60s; (b) 120s. [18]
Figure 2.14: The variation of CO concentration at different heights. [18] 19
Figure 2.15: CO distribution in the car: (a) 60s; (b) 120s. [18]

Figure 2.16: CO2 distribution in the car: (a) 60s; (b) 120s. [18]20
Figure 2.17: Temperature distribution in the car: (a) 60s; (b) 120s. [18] 21
Figure 2.18: Temperature distribution in the car at the end of evacuation. [18]. 21
Figure 2.19: The comparison chart of evacuation efficiency. [18]
Figure 2.20: A schematic drawing of the subway station. [19]
Figure 2.21: Temperature contour at the cross-sectional of $y = 0$ m for full-seal PSD. [19]
Figure 2.22: Visibility contour at $z = 2$ m above the platform floor for full-seal PSD. [19]
Figure 2.23: Temperature contour at the cross-sectional of $y = 0$ m for half-height safety door. [19]
Figure 2.24: Visibility contour at $z = 2$ m above the platform floor for half-height safety door. [19]
Figure 2.25: The simplified compartment geometry model. [22]
Figure 2.26: when t=246 s, temperature distribution of Middle Seat fire. [22] 30
Figure 2.27: In 120s smoke distribution if fire from central seat. [22] 31
Figure 2.28: CO concentration change of left door. [22]
Figure 2.29: Visibility spatial distribution if fire caused by central seat. [22] 31
Figure 2.30: Smoke spread in 200s contrast between (a) case V and (b) case VI. [22]
Figure 2.31: Temperature distribution contrast between (a) case VII and (b) case VIII. [22]
Figure 2.32: The schematic diagram of smoke back-layering in subway tunnel. [23]
Figure 2.33: Smoke gas temperature distribution underneath the ceiling indicating
the back-layering length. [23]

Figure 2.34: The dimensionless result of each simulation case. [23]
Figure 2.35: Correlation of dimensionless back-layering length. [23] 37
Figure 2.36: Correlation of dimensionless back-layering length. [23]
Figure 2.37: Comparison of dimensionless back-layering length between results from CFD simulation and previous model: Smoke back-layering shorter than metro train length. [23]
Figure 2.38: Comparison of dimensionless back-layering length between results from CFD simulation and previous model: Smoke back-layering longer than metro train length. [23]
Figure 2.39: The layout of tunnel fires for (a) physical model; (b) simulated model. [24]
Figure 2.40: The train location in tunnel for (a) train location A; (b) train location B; (c) train location C. [24]
Figure 2.42: The fire source location in fire carriage for (a) fire source location A; (b) fire source location B. [24]
Figure 2.43: The ceiling temperatures comparison of different fire source location. [24]
Figure 2.44: The fire carriage in train for (a) fire carriage location A; (b) fire carriage location B. [24]
Figure 2.45: The ceiling temperatures comparison of different fire carriage location. [24]
Figure 3.1: The concept of the social force [25]
Figure 3.2: The shape of the human body [25]
Figure 4.1: The schematic of the simulated FDS model. 52
Figure 4.2: The HRR curve of luggage fire. [26]

Figure 4.3: Smoke layer temperature variation with time at the human level (1.8
m)
Figure 4.4: The schematic of the FDS model in Series 1
Figure 4.5: Maximum smoke temperature under ceiling for Exp. (7) in series (1).
Figure 5.1: Case 1, 2 and 3
Figure 5.2: Visibility contours in zone #1 for case 1, case 2 and case 3 at the human
level (1.8 m) at three different times
Figure 5.3: Visibility contours in zone #2 for case 1, case 2 and case 3 at the human
level (1.8 m) at three different times
Figure 5.4: Visibility contours in zone #1 for case 1, case 2 and case 3 at mid plane at three different times
Figure 5.5: Visibility contours in zone #2 for case 1, case 2 and case 3 at mid plane at three different times
Figure 5.6: Temperature contours in zone #1 for case 1, case 2 and case 3 at the
human level (1.8 m) at three different times
Figure 5.7: Temperature contours in zone #2 for case 1, case 2 and case 3 at the human level (1.8 m) at three different times
Figure 5.8: Temperature contours in zone #1 for case 1, case 2 and case 3 at mid plane at three different times
Figure 5.9: Temperature contours in zone #2 for case 1, case 2 and case 3 at mid
plane at three different times
Figure 5.10: CO concentration contours in zone #1 for case 1, case 2 and case 3 at the human level at three different times
Figure 5.11: CO concentration contours in zone #2 for case 1, case 2 and case 3 at the human level (1.8 m) at three different times

Figure 5.12: Smoke layer height variation with time for case 1, case 2 and case 3.
Figure 5.13: Number of passengers with evacuation time for case 1, case 2, case
3, case 8 and case 0
Figure 5.14: FED with evacuation time for case 1, case 2, case 3, case 8 and case 0
Figure 5.15: Number of dead passengers for case 1, case 2, case 3, case 0 and case 8
Figure 5.16: Case (4)
Figure 5.17: Case (5)
Figure 5.18: Visibility contours in zone #1 for case 3, case 4 and case 5 at the human level (1.8 m) at three different times
Figure 5.19: Visibility contours in zone #2 for case 3, case 4 and case 5 at the human level (1.8 m) at three different times
Figure 5.20: Visibility contours in zone #1 for case 3, case 4 and case 5 at mid plane at three different times
Figure 5.21: Visibility contours in zone #2 for case 3, case 4 and case 5 at mid plane at three different times
Figure 5.22: Temperature contours in zone #1 for case 3, case 4 and case 5 at the human level (1.8 m) at three different times
Figure 5.23: Temperature contours in zone #2 for case 3, case 4 and case 5 at the human level (1.8 m) at three different times
Figure 5.24: Temperature contours in zone #1 for case 3, case 4 and case 5 at mid plane at three different times
Figure 5.25: Temperature contours in zone #2 for case 3, case 4 and case 5 at mid plane at three different times

Figure 5.26: CO concentration contours in zone #1 for case 3, case 4 and case 5 at
the human level (1.8 m) at three different times
Figure 5.27: CO concentration contours in zone #2 for case 3, case 4 and case 5 at
the human level (1.8 m) at three different times
Figure 5.28: Smoke layer height variation with time for case 3, case 4 and case 5.
Figure 5.29: Number of passengers with evacuation time for case 3, case 4, case 5 and case 0.
Figure 5.30: FED with evacuation time for case 3, case 4, case 5 and case 0 88
Figure 5.31: Number of dead passengers for case 3, case 4, case 5 and case 089
Figure 5.32: Case 6
Figure 5.33: Case 7
Figure 5.34: Visibility contours in zone #1 for case 3, case 6 and case 7 at the human level (1.8 m) at three different times
Figure 5.35: Visibility contours in zone #2 for case 3, case 6 and case 7 at the human level (1.8 m) at three different times
Figure 5.36: Visibility contours in zone #1 for case 3, case 6 and case 7 at mid plane at three different times
Figure 5.37: Visibility contours in zone #2 for case 3, case 6 and case 7 at mid plane at three different times
Figure 5.38: Temperature contours in zone #1 for case 3, case 6 and case 7 at the human level (1.8 m) at three different times
Figure 5.39: Temperature contours in zone #2 for case 3, case 6 and case 7 at the human level (1.8 m) at three different times
Figure 5.40: Temperature contours in zone #1 for case 3, case 6 and case 7 at mid plane at three different times