Plasma Pentraxin3 (PTX3) as a Marker of Non Alcoholic Fatty Liver Disease (NAFLD) in Obese Children

Thesis

Submitted for partial fulfillment of master degree in

Pediatrics

Presented by:

Qutb Abd Elhamid Alsayed mohamed

M.B;B.Ch. Faculty of Medicine Ain Shams University 2005

Under Supervision of

Prof. Amel Abd Elmagied El-Faramawy

Professor of Pediatrics Faculty of Medicine Ain Shams University

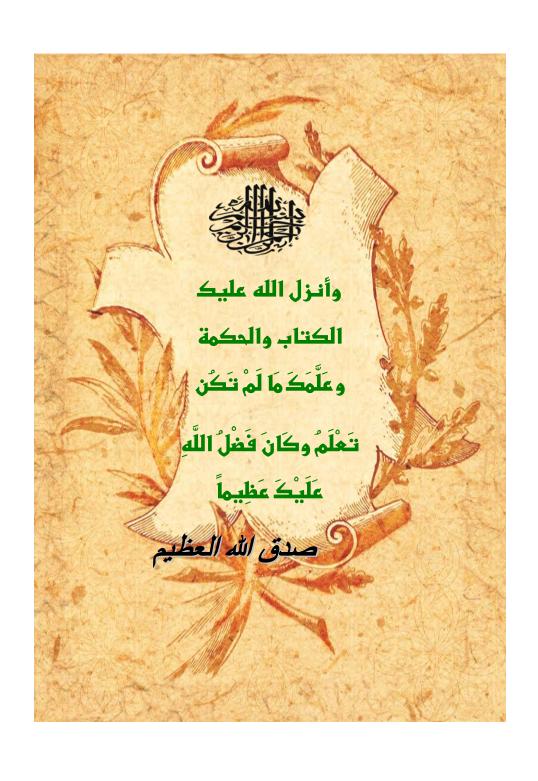
Prof. Nermeen Helmy Mahmoud

Professor of Clinical Pathology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2014

First of all, I wish to express my endless thanks to ALLAH for giving me the help to perform this work

I would like to express my deepest thanks and highest appreciation to **Prof. Dr. Amel Abd Elmagied El Faramawy** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous support, enriching observations and sincere advice throughout this work.


I owe special thanks and gratitude to **Prof. Dr. Nermeen**Helmy Mahmoud Professor of Clinical Pathology, Faculty of

Medicine, Ain Shams University, for her precious help and fruitful

guidance.

Also, I would like to convey my special thanks to my wife and my family for their constant support.

Qutb Abd Elhamid Alsayed mohamed

LIST OF CONTENTS

Title	Page No.
LIST OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	Vi
LIST OF ABBREVIATIONS	Viii
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
• Chapter (1): Nonalcoholic fatty liver disease	5
Chapter (2): pentraxin3 fragment	53
SUBJECTS AND METHODS	57
RESULTS	68
DISCUSSION	107
SUMMARY AND CONCLUSION	120
RECOMMENDATIONS	122
REFERENCES	123
ADARIC SLIMMARY	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Various causes of hepatic steatosis	22
Table (2):	Burnt grading system for NASH	41
Table (3):	Burnt staging system for NASH	41
Table (4):	NASH Clinical Research Network Scoring System for NAFLD	42
Table (5):	Comparison between cases and controls as regards age	68
Table (6):	Comparison between cases and controls as regards sex distribution	69
Table (7):	Comparison between cases and controls as regards complications of obesity	69
Table (8):	Comparison between cases and controls as regards complains related to liver	70
Table (9):	Comparison between cases and controls as regards family history	70
Table (10):	Comparison between cases and controls as regards systolic blood pressure (SBP th) and	
	diastolic blood pressure (DBP th) percentiles	71
Table (11):	Comparison between cases and controls as regards liver span by abdominal examination	71
Table (12):	Comparison between cases and controls as regards Anthropometric measures	72
Table (13):	Comparison between cases and controls as regards results of liver function tests	73
Table (14):	Comparison between cases and controls as regards Fasting Lipid Profile results	73

.Tab. No.	Title	Page No.
Table (15):	Comparison between cases and controls as	
	regards fasting blood glucose & blood insulin levels	74
Table (16):	Comparison between cases and controls as	
	regards liver size by U/S	74
Table (17):	Comparison between cases and controls as regards U/S findings	75
Table (18):	Comparison between cases and control as	
	regards PTX-3	76
Table (19):	Correlation between PTX-3 and blood pressure	77
Table (20):	Correlation between PTX-3 and liver span by	
	abdominal examination	79
Table (21):	Correlation between PTX-3and Anthropometric	
	measurements	80
Table (22):	Correlation between PTX-3 and Fasting Lipid Profile	83
Table (23):	Correlation between PTX-3 and liver functions	86
Table (24):	Correlation between PTX-3 and US finding	87
Table (25):	Comparison between PTX-3, mild, moderate and severe cases with fatty liver proven by U/S	88
Table (26):	Comparison between cases with fatty liver	
, ,	proven by U/S and without as regards	
	Anthropometric measures	89
Table (27):	Comparison between cases with fatty liver proven	
	by U/S and cases without regarding liver functions	90
Table (28):	Comparison between cases with fatty liver proven by U/S and without as regards Fasting Lipid profile.	90
Table (29):	Comparison between cases with fatty liver	
	proven by U/S and without as regards fasting	
	blood glucose & blood insulin levels	91

Tab. No.	Title	Page No.
Table (30):	Comparison between cases with fatty liver proven by U/S and without as regards PTX-3	91
Table (31):	Comparison between cases with fatty liver proven by U/S and controls as regards PTX-3	92
Table (32):	Comparison between cases without fatty liver proven by U/S and controls as regards PTX-3	93
Table (33):	Demographic and clinical characteristics of cases of fatty liver with elevated liver enzymes	95
Table (34):	Metabolic and lipid profile of cases of fatty liver with elevated liver enzymes	96
Table (35):	PTX-3 of cases of fatty liver with elevated liver enzymes	96
Table (36):	U/S characteristics of cases of fatty liver with elevated liver enzymes	97
Table (37):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards BP	97
Table (38):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards	
Table (39):	anthropometric measurements Comparison between cases of fatty liver with	98
-	and without elevated liver enzymes as regards liver span	99
Table (40):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards	99
Table (41):	liver size by U/S Comparison between cases of fatty liver with and without elevated liver enzymes as regards fasting lipid profile, fasting blood glucose and	<i>9</i> 9
	blood insulin level	100

Tab. No.	Title	Page No.
Table (42):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards PTX-3	101
Table (43):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards U/S fatty liver grade	103

LIST OF FIGURES

Fig. No.	Title	Page No.
Fig. (1):	Proposed pathogenesis of NASH	13
Fig. (2):	Nonalcoholic fatty liver disease 1	29
Fig. (3):	Nonalcoholic fatty liver disease 2	29
Fig. (4):	Nonalcoholic fatty liver disease 3	31
Fig. (5):	Nonalcoholic steatohepatitis 1	31
Fig. (6):	Nonalcoholic steatohepatitis 2	33
Fig. (7):	Nonalcoholic steatohepatitis 3	34
Fig. (8):	Top; Typical type 1 (adult) NASH pattern Bottom; Type 2 (pediatric) NASH pattern	35
Fig. (9):	High-power photomicrographs histological features of each stage of fatty liver disease	40
Fig. (10):	Diagnostic flow chart for children with suspected NAFLD or NASH	46
Fig. (11):	Mean of PTX3 in cases and controls	76
Fig. (12):	The ROC curve comparing NAFLD cases and controls	77
Fig. (13):	Correlation between PTX-3 and SBP	78
Fig. (14):	Correlation between PTX-3 and DBP	78
Fig. (15):	Correlation between PTX-3 and liver span	79
Fig. (16):	Correlation between PTX-3 and weight	80
Fig. (17):	Correlation between PTX-3 and BMI	81
Fig. (18):	Correlation between PTX-3 and waist circumference	81
Fig. (19):	Correlation between PTX-3 and hip circumference	82
Fig. (20):	Correlation between PTX-3 and abdominal fat thickness	82

Fig. No.	Title	Page No.
Fig. (21):	Correlation between PTX-3 and Cholesterol	84
Fig. (22):	Correlation between PTX-3 and triglycerides	84
Fig. (23):	Correlation between PTX-3 and HDL	85
Fig. (24):	Correlation between PTX-3 and LDL	85
Fig. (25):	Correlation between PTX-3 and ALT	86
Fig. (26):	Correlation between PTX-3 and AST	87
Fig. (27):	Correlation between PTX-3 and liver size by ultrasound	88
Fig. (28):	Mean of PTX3 in cases with and without fatty liver proven by U/S	92
Fig. (29):	Mean of PTX3 in cases of fatty liver and controles proven by U/S	93
Fig. (30):	Mean of PTX3 in cases without fatty liver and controles proven bu U/S	94
Fig. (31):	Mean of PTX3 in cases with elevated liver enzymes and normal liver enzymes.	101
Fig. (33):	The ROC curve comparing the cases with fatty liver proven by U/S with (7) and without (33) elevated	
	liver enzymes	102
Fig. (33):	show mild, moderate and sever cases with fatty liver by U/S with and without elevated liver enzyme	103
Fig. (34):	The ROC curves comparing different grades of fatty liver(1)	104
Fig. (35):	The ROC curves comparing different grades of fatty liver(2)	105
Fig.(36):	The ROC curves comparing different grades of fatty liver(3)	106

LIST OF ABBREVIATIONS

Abbrev.		Meaning
11βHSD1	:	11 Beta hydroxysteroid dehydrogenase 1
ALT	:	Alanine aminotransferase
ASH	:	Alcoholic steatohepatitis
AST	:	Aspartate aminotransferase
AUROC	:	Area under the receiver operating characteristic
BP	:	Blood pressure
BMI	:	Body mass index
CF	:	Cystic fibrosis
CHC	:	Chronic hepatitis C
CK-18	:	Cytokeratin 18
CRN	:	Clinical research network
CRP	:	C-reactive protein
CT	:	Computed tomography
CVD	:	Cardiovascular disease
DBP	:	Diastolic blood pressure
DM	:	Diabetes melliatus
DNL	:	De novo lipogenesis
ELISA	:	Enzyme linked sandwich immunoassay
ER Stress	:	Endoplasmic reticulum stress
FA	:	Fatty liver
FFA	:	Free fatty acids
GGT	:	Gamma glutamyl transferase
G/I Ratio	:	Glucose/ insulin ratio
GSH-Px	:	Glutathione peroxidase

	Meaning
:	Hepatitis B virus
:	Hepatocellular carcinoma
:	Hepatitis C virus
:	3-Hydroxy-3 methyglutaryl coenzyme A
:	Homeostasis model assessment of insulin resistance
:	Hepatic stellate cells
:	Isolated fatty liver
:	Inhibitor of nuclear factor kappa-b kinase subunit beta.
:	Interleukin-6
:	Interleukin-8
:	International normalizing ratio
:	Insulin resistance
:	Insulin receptors
:	International Society for the Advancement of Kinanthropometry
:	Low density lipoprotein
:	Liver function tests
:	Lipopolysaccharide
:	Milligram per deciliter
:	Millimeter
:	Millimeter mercury
:	Magnetic resonance
:	Magnetic resonance imaging
:	Magnetic resonance spectroscopy
:	Non alcoholic fatty liver disease
:	NAFLD activity score

Abbrev.		Meaning
NASH	:	Nonalcoholic steatohepatitis
NF-KB	:	Nuclear factor kappa B
NHANES	:	National Health and Nutrition Examination Survey
NHBPEP	:	National High Blood Pressure Education Program
NHMRC	:	National Health and Medical Research Council
OSA	:	Obstructive sleep apnea
PCOS	:	Polycystic ovarian sybdrome
PPAR	:	Peroxisome proliferative activated receptor
ROC	:	Receiver Operating Characteristic
ROS	:	Reactive oxygen species
SAP	:	Serum amyloid component
SBP	:	Systolic blood pressure
SD	:	Standard deviation
SDS	:	Sudden death syndrome
SREBP	:	Sterol regulatory element binding protein
TC	:	Total cholestrol
TG	:	Triglycerides
TGF-β	:	Tissue growth factor-beta
THV	:	Terminal hepatic venule
TNF-α	:	Tumor necrosis factor alpha
TPS	:	Tissue polypeptide specific antigen
U/L	:	Unit/liter
U/S	:	Ultrasonography
UDCA	:	Urosdeoxycholic acid
VLDL	:	Very low density lipoproteins
W/H	:	Waist to hip ratio
Wt.	:	Weight

INTRODUCTION

Obesity is the most relevant risk factor for NAFLD in children and several studies have described the prevalence and risk factors of NAFLD in these populations (*Fraser*, 2007).

Obese children with waist circumference or above the 90th percentile are at higher risk for dyslipidemia and insulin resistance than obese children with normal waist circumference. These results inductance that routine waist circumference evaluation in obese children may help clinicians identify which obese children are at greater risk of diabetes and other cardiovascular disease (*Bassali et al.*, 2009).

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in the preadolescent and adolescent age groups in the United States (*Patton et al.*, 2008).

The development of NAFLD in children requires the coexistence of multiple factors. Among the numerous risk factors, many are similar to risk factors that have been identified in the adult population, including obesity, visceral adiposity, insulin resistance, and presence of other features of the metabolic syndrome. Other risk factors, such as race, ethnicity, sex, and distribution and progression of pubertal development, are exclusive to pediatric NAFLD (*Alis*, 2009).

The majority of patients with NAFLD and NASH are asymptomatic with mild, incidental elevation of aminotransferases. No specific symptoms can distinguish NAFLD or NASH from other types of liver disease. The diagnosis of NAFLD requires the exclusion of other specific etiologies of liver disease and excessive alcohol consumption. The majority of patients have 1 or more risk factors for metabolic syndrome, such as type 2 diabetes, obesity or hyperlipidemia. When symptoms occur, the most common complaint is fatigue and occasionally right upper quadrant abdominal discomfort (*Rafiq, 2009*).

In this context, early identification of patients with nonalcoholic steatohepatitis prior to the onset of advanced fibrosis would be helpful in guiding aggressive intervention. Liver biopsy remains the gold standard for obtaining an accurate diagnosis of nonalcoholic steatohepatitis, as well as for differentiating this condition from simple steatosis. Unfortunately, biopsy is a costly and invasive diagnostic procedure (Wieckowska et al., 2008). Pentraxin 3 (PTX3) is produced by a variety of tissues and cells and in particular innate immunity cells bγ in response proinflammatory signals and endothelial cells (Mantovani et al., **2006**).

Because of this extrahepatic synthesis and in contrast to CRP, PTX3 levels are believed to be a true independent indicator of disease activity produced at sites of inflammation (*Fazzini et al.*, 2001)