

Technical and Economical Assessment Of Pretreatment Alternative Systems Associated with RO Desalination Plant

A thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment Of the Requirement of M.SC.

Degree in Civil Engineering

Prepared by

MAGGY FEKRY LABIB HENRY

B.SC. in Civil Engineering, June 2005 Faculty of Engineering, Ain Shams University

Supervisors

Prof. Dr. FIKRY HALIM GHOBRIAL

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. INAS SAIED WAHB

Assistant Prof. of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

2014

Technical and Economical Assessment Of Pretreatment Alternative Systems Associated with RO Desalination Plant

A Thesis For

The M.Sc. Degree in Civil Engineering (Sanitary Engineering)

By MAGGY FEKRY LABIB HENRY

B.SC. in Civil Engineering, June 2005 Faculty of Engineering, Ain Shams University

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Fikry Halim Ghobrial	
Prof. of Sanitary Engineering	
Ain Shams University, Cairo, Egypt	
Prof. Dr. Mohamed Shaaban Mahmoud	
Prof. of Sanitary Engineering	
Ain Shams University, Cairo, Egypt	
Prof. Dr. Hisham sayed Abd El Halim	
Prof. of Sanitary Engineering	
Cairo University, Giza, Egypt	

DATE: ---- / 2014

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from September 2009 to June 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: ---- / 2014

Signature: -----

Name: MAGGY FEKRY LABIB HENRY

DEDICATION

This work takes a period of my life
There are a number of people without whom this thesis
might not have been written, to whom I wish to dedicate
it

To my family

To whom suffered to educate, prepare me, helped me to build my capacities and to be as I am

TO MY FATHER

To whom continued to learn, grow and develop me and who has been a

Source of encouragement and inspiration to me throughout my life, to whom easy my life

TO MY MOTHER

I wish to dedicate it finally to whom supported me, and who was a great help for finishing this thesis as I wish and hope

TO MY SISTER

Acknowledgement

The author wishes to express her gratitude to **Prof. Dr. Fikry Halim Ghobrial,** Professor of Sanitary & Environmental

Engineering Faculty of Engineering, Ain Shams University, for

his great help in choosing the study subject, sponsoring,

guidance, helpful suggestions, great supporting efforts, and

helping during this work preparation and progress.

Also, great thanks and sincere appreciation to **Dr. Inas Saied Wahb,** Assistant Professor of Sanitary & Environmental
Engineering, Faculty of Engineering, Ain Shams University, for
her kind supervision and valuable advice, her encourage and
cooperation during the preparation of this study as well as for
her patience in revising this thesis.

ABSTRACT

Name: Maggy Fekry Labib Henry

Titled: "Technical and Economical Assessment of Pretreatment Alternative Systems Associated with RO Desalination Plant" Institute: Faculty of Engineering, Ain Shams University

Specialty: Public Works, Sanitary & Environmental Engineering

The present work technical, economic assessment, and comparison of viable alternative pretreatment systems, which may precede RO desalination is conducted with the objective to determine the most appropriate pre-treatment alternative. All alternatives are technically viable and produce adequate water quality for RO process.

The capital cost and the operation & maintenance cost (O&M Cost) of each component are determined and compared. The determination of the capital costs as well operation and maintenance costs are adapted from the models given by Qasim [49]. The Comparative Life Cycle (CLC) costing method is adopted to compare the total cost for an infinite horizon considering differ life span of the components and an applicable interest rate. The cost of different plant capacities (1,000, 5,000, 10,000 and 50,000) m3/d have been also estimated and compared up to the year 2050 using the CLC method for various alternatives.

Supervisors:

Prof. Dr. FIKRY HALIM GHOBRIAL

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. INAS SAIED WAHB

Assistant Prof. of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Keywords: Pretreatment before RO Desalination Plant, Technical and Economical Assessment of Pretreatment Alternative, Reverse Osmosis Desalination Plant, Comparative Life Cycle) costing method

SUMMARY

Water is an integral part of live and has been always mankind's most precious resource. The total volume of water on Earth is about 1.4 billion km3, 2.5 % only of the total volume is fresh water and 97.5% is salt water. By 2025, 1.8 billion people will be living in countries or regions with absolute water scarcity, and two-thirds of the world's population could be living under water stressed conditions. A study by Trieb and Muller [18] pointed out that desalination may offer a solution to overcome water shortages in the MENA region [18&19]. Reverse osmosis (RO) and Nanofiltration (NF) have long been utilized for desalination, softening and contaminants removal. Both technologies are manufactured, designed and built for "salt" and dissolved ion removal and not particulate matter. Therefore, proper pretreatment plays a critical role in the performance, life expectancy and the overall operating costs of these systems. Consistent high quality pre-treatment of the feed water is one of the most important prerequisites for long-term successful operation of seawater desalination plants.

In the present work technical, economic assessment, and comparison of viable alternative pretreatment systems, which may precede RO desalination is conducted with the objective to determine the most appropriate pre-treatment alternative. All alternatives are technically viable and produce adequate water quality for RO process.

Pretreatment alternatives included units to prevent the growth of bacteria; fouling caused by suspended solids; disinfection units to disperse calcium carbonate and sulfates precipitates in order to avoid scaling; and dechlorination units to prevent the presence of residual free chlorine. Every alternative is composed of several components. The capital cost and the operation & maintenance cost (O&M Cost) of each component are determined and compared. The determination of the capital costs as well operation and maintenance costs are adapted from the models given by Qasim [49]. The Comparative Life Cycle (CLC) costing method is adopted to compare the total cost for an infinite horizon considering differ life span of the components and an applicable interest rate. The cost of different plant capacities (1,000, 5,000, 10,000 and 50,000) m3/d have been also estimated and compared up to the year 2050 using the CLC method for various alternatives.

The study revealed that the total cost of membrane filtration techniques; namely: microfiltration, ultra-filtration, or Nano-filtrations generally more expensive than conventional media filtration. Moreover, the capital cost/m3 showed that on the long term nano-filtration is the most expensive solution, while microfiltration is the least cost option even compared to conventional media filtration alternative.

TABLE OF CONTENTS

List of Figures List of Tables

CHAPTE	ERI: INTRODUCTION	1
1.1	General Background	1
1.2	Water availability	2
1.2.1	Parameter influence the water availability	2
1.2.2	Water Availability in 2050	3
1.3	Water demand	3
1.4	Water scarcity	4
1.5	Challenges and Directions	6
CHAPTE	ER II : LITERATURE REVIEW	9
2.1	Desalination	9
2.1.1	Development of Desalination	10
2.2	Input and Output Water in Desalination Plant	11
2.2.1	Input Water (Feed water)	11
2.2.2	Product Water	11
2.2.3	Waste Discharges and Disposal Practices	12
2.3	Desalination Process	14
2.3.1	Major Processes	15
2.3.1.1	Thermal technologies	15
2.3.1.1.1	Multi-Stage Flash Distillation (MSF)	16
2.3.1.1.2	Multi-Effect Distillation (MED)	19
2.3.1.1.3	Vapor Compression Distillation (VCD)	20
2.3.1.2	Membrane technologies	21
2.3.1.2.1	Electro dialysis (ED) and Electro dialysis Reversal	
	(EDR)	21
2.3.1.2.2	Electro dialysis Reversal	28
2.3.1.2.3	Reverse Osmosis (RO) and Membranes (Nano-	
	filtration (NF), Microfiltration &Ultra filtration)	29
2.3.1.2.3A	Microfiltration and Ultra filtration	31
2.3.1.2.3B	Hyper filtration Processes	33
2.3.2	Other Process	36
2.3.2.1	Freezing	36
2.3.2.2	Membrane Distillation	36
2.3.2.3	Solar humidification	37

3.1 Osmosis phenomenon	39
3.2 RO desalination plant components	40
3.2.1 High-Pressure Pump	40
3.2.2 Membrane Assembly	41
3.2.2.1 Membranes	41
3.2.2.2 Membrane Assembly Unit	42
3.2.2.3 Type of Membrane & its performance	43
3.2.2.3A Spiral-Wound Systems	44
3.2.2.3B Hollow-Fine-Fiber Membranes	45
3.2.2.3C Tubular membranes	46
3.2.3 Pretreatment System	48
3.2.3.1 The pretreatment objectives:	49
3.2.3.2 Alternative Pretreatment prior to RO System	49
3.2.3.3 Typical Pretreatment Processes for Seawater	
Desalination:	50
3.2.3.3A Conventional (chemical coagulation – precipitation –	
filtration)	50
3.2.3.3B Chemical pretreatment	51
3.2.3.3C Microfiltration & Ultra filtration	52
3.2.3.3D Microfiltration	56
3.2.3.3E Nano filtration	56
3.2.4 Post-Treatment System	57
3.2.5 Case study — eastern Mediterranean feed	57
3.2.6 Case study — (WF21)	64
Chapter IV : Economic Assessment	67
4.1 Process Economics	67
4.1.1 Elements in Desalination Costing	67
4.1.2 Capital and Operational Costs of Desalination Plants	69
4.1.2.1 Capital costs	69
4.1.2.1.1 Direct capital costs	69
4.1.2.1.2 Indirect capital costs	71
4.1.2.2 Operating and maintenance costs	72
4.1.2.3 Labor costs	75
4.1.2.4 Water source and production costs	75
4.1.2.5 Financing costs	76
4.1.3 Comparison of Unit Product Costs for Principal	
Desalination Technologies	76
4.2 Economics Assessment of Alternative	, 3
Pretreatment Units Preceding RO Desalination	83
4.2.1 Pretreatment Alternatives	84

4.2.2	Cost of Pretreatment Process Alternatives	86
4.2.2.1	The cost of Coagulants	86
4.2.2.1.1	Ferric Sulfate (Fe2 (SO4)3-7H2O) &Ferric Chloride	
	(FeCl3- 6H2O)	86
4.2.2.1.2	Aluminum Sulfate (Dry) & Aluminum Sulfate	
	(Liquid)	88
4.2.2.2	The cost of Coagulants aid	90
4.2.2.2.1	Polyelectrolyte	90
4.2.2.2.2	Poly Aluminum Chloride Dry & Liquid	91
4.2.2.3	The cost of DE chlorination:	93
4.2.2.4	The cost of up flow solids Contact Clarifier	94
4.2.2.5	The cost of Gravity Filtration	96
4.2.2.5.1	Gravity Filter Structural	96
4.2.2.5.2	Backwashing pump	97
4.2.2.5.3	Media: Rapid sand	98
4.2.2.5	The cost of Ultra-filtration	98
4.2.2.6	The cost of Micro -filtration	99
4.2.2.7	The cost of Nano-filtration (At 2008)	101
2.2.8.	The cost for Disinfection	101
2.2.8.1	CL2	101
4.2.2.8.2	Ozone	102
Chapter	V : Economic comparison Results	
5.1	Economic comparison of the alternatives	105
5.2	Economic assessment using relative analysis of the	
	life cycle (CLC)	108
5.2.1	Economic assessment for 1,000 m3/day capacity for	
	the year 2050	109
5.2.1.1	Conventional Alternative with chlorine	109
5.2.1.2	Conventional Alternative with Ozone	109
5.2.1.3	Direct filtration with chlorine	110
5.2.1.4	Direct filtration with Ozone	110
5.2.1.5	Microfiltration with chlorine	111
5.2.1.6	Microfiltration with Ozone	111
5.2.1.7	Ultra-filtration with chlorine	112
5.2.1.8	Ultra-filtration with Ozone	112
5.2.1.9	Nano-filtration with chlorine	113
5.2.1.10	Nano-filtration with Ozone	113
5.2.2	Comparison between all alternative 5,000 m3/day capacity	
	for the Year 2050	114
5.2.2.1	Conventional Alternative with chlorine	114
5.2.2.2	Conventional Alternative with Ozone	114

5.2.2.3	Direct filtration with chlorine	115
5.2.2.4	Direct filtration with Ozone	115
5.2.2.5	Microfiltration with chlorine	116
5.2.2.6	Microfiltration with Ozone	116
5.2.2.7	Ultra-filtration with chlorine	117
5.2.2.8	Ultra-filtration with Ozone	117
5.2.2.9	Nano-filtration with chlorine	118
5.2.2.10	Nano-filtration with Ozone	118
5.2.3	Economic assessment for 10,000 m3/day capacity for the	
	year 2050	119
5.2.3.1	Conventional Alternative with chlorine	119
5.2.3.2	Conventional Alternative with Ozone	119
5.2.3.3	Direct filtration with chlorine	120
5.2.3.4	Direct filtration with Ozone	120
5.2.3.5	Microfiltration with chlorine	121
5.2.3.6	Microfiltration with Ozone	121
5.2.3.7	Ultra-filtration with chlorine	122
5.2.3.8	Ultra-filtration with Ozone	122
5.2.3.9	Nano-filtration with chlorine	123
5.2.3.10	Nano-filtration with Ozone	123
5.2.4	Economic assessment for 50,000 m3/day capacity for the	
	year 2050	124
5.2.4.1	Conventional Alternative with chlorine	124
5.2.4.2	Conventional Alternative with Ozone	124
5.2.4.3	Direct filtration with chlorine	125
5.2.4.4	Direct filtration with Ozone	125
5.2.4.5	Microfiltration with chlorine	126
5.2.4.6	Microfiltration with Ozone	126
5.2.4.7	Ultra-filtration with chlorine	127
5.2.4.8	Ultra-filtration with Ozone	127
5.2.4.9	Nano-filtration with chlorine	128
5.2.4.10	Nano-filtration with Ozone	128
5.2.5	Comparison between all alternatives over all	
	capacities for the year 2050	129
5.2.5.1	Comparison between all alternative 1,000 m3/day	
	capacity for the year 2050	129
5.2.5.2	Comparison between all alternative 5,000 m3/day	
	capacity for the year 2050	130
5.2.5.3	Comparison between all alternative 10,000 m3/day	
	capacity for the year 2050	131
5.2.5.4	Comparison between all alternative 50,000 m3/day	
	capacity for the year 2050	132

5.2.6	Comparison between Capital cost /m3 over all capacities for each alternative	133
5.2.6.1	Comparison between Capital cost /m3 of conventional with Chlorine alternative the year 2050 for all capacity	134
5.2.6.2	Comparison between Capital cost /m3 of conventional with Ozone alternative the year 2050 for all capacity	135
5.2.6.3	Comparison between Capital cost /m3 of Direct filtration with chlorine alternative the year 2050 for all capacity	135
5.2.6.4	Comparison between Capital cost /m3 of Direct filtration with Ozone alternative the year 2050 for all capacity	136
5.2.6.5	Comparison between Capital cost /m3 of microfiltration with chlorine alternative the year 2050	
5.2.6.6	for all capacity Comparison between Capital cost /m3 of microfiltration with Ozone alternative the year 2050	136
5.2.6.7	for all capacity Comparison between Capital cost /m3 of Ultra- filtration with chlorine alternative the year 2050 for all	137
5.2.6.8	capacity Comparison between Capital cost /m3 of Ultra- filtration with Ozone alternative the year 2050 for all	137
5.2.6.9	capacity Comparison between Capital cost /m3 of Nano- filtration with chlorine alternative the year 2050 for all	138
5.2.6.10	capacity Comparison between Capital cost /m3 of Nano- filtration with Ozone alternative the year 2050 for all	138
5.2.7	capacity Comparison between Total cost /m3 over all capacities for each alternative	139 140
5.2.7.1	Comparison between Total cost /m3 of conventional with Chlorine alternative the year 2050 for all	
5.2.7.2	capacities Comparison between Total cost /m3 of conventional	141 142
5.2.7.3	with Ozone alternative the year 2050 for all capacity Comparison between Total cost /m3 of direct filtration with chlorine alternative the year 2050 for all capacity	142
5.2.7.4	Comparison between Total cost /m3 of direct filtration with Ozone alternative the year 2050 for all capacity	143

5.2.7.5	Comparison between Total cost /m3 of microfiltration	
	with chlorine alternative the year 2050 for all capacity	143
5.2.7.7	Comparison between Total cost /m3 of microfiltration	
	with Ozone alternative the year 2050 for all capacity	144
5.2.7.7	Comparison between Total cost /m3 of Ultra-filtration	
	with chlorine alternative the year 2050 for all capacity	144
5.2.7.8	Comparison between Total cost /m3 of Ultra-filtration	
	with Ozone alternative the year 2050 for all capacity	145
5.2.7.9	Comparison between Total cost /m3 of Nano-filtration	
	with chlorine alternative the year 2050 for all capacity	145
5.2.7.10	Comparison between Total cost /m3 of Nano-filtration	
	with Ozone alternative the year 2050 for all capacity	146
Chapter	VI : Conclusions& recommendations	147
6.1	Study conclusions	147
6.2	Recommendations	150
Reference	ees	151

LIST OF FIGURES

CHAPTER I: INTRODUCTION		
Figure 1.1	Water Demand	3
	II :LITERATURE REVIEW	
Figure 2.1	Classification of thermal and membrane	
	desalination processes	13
Figure 2.2	Simplified flow scheme of an MSF plant	17
Figure 2.3	Unit Size MSF plant in Shoaiba	
	45,500m3/Day Unit Size	18
Figure 2.4	MSF Desalination plant Hidd in the kingdom	
_	of Bahrain	18
Figure 2.5	Simplified flow scheme of an MED plant	20
Figure 2.6	Simplified flow scheme of a VCD plant	21
Figure 2.7	Ion transport in electro dialysis	22
Figure 2.8	Movement of ions in the electro dialysis	
\mathcal{C}	process	27
Figure 2.9	Membrane separation process	31
Figure 2.10	Water resources by country, 2006.	35
Chanter III	: Pretreatment Alternatives	
Figure 3.1	Osmotic pressures of sodium nitrate, chloride	
riguies.i	and sulfate, and seawater at 25°C	41
Eigura 2.2	Pressure Vessel with three membrane	41
Figure 3.2		42
E: 2.2	elements	42
Figure 3.3	Shows the factors influencing the membrane	4.0
F: 24	performance.	43
Figure 3.4	Spiral-wound membrane assembly	44
Figure 3.5	Shows the hollow-fine fiber membrane	4.6
T' 0.5	configuration.	45
Figure 3.6	Tubular membranes assembly	46
Figure 3.7	Flow diagram show an example for Chemical	
	pretreatment	51
Figure 3.8	Consumables cost comparison.	63
Figure 3.9	Shows Total water cost comparison.	63
Chapter IV	: Economic Assessment	
Figure 4.1	Cost elements of desalination processes	68
Figure 4.2	Unit product cost versus unit capacity for	
	major desalination processes	82