OUTCOME AND PERFORMANCE OF PERCUTANEOUS CUFFED TUNNELED JUGULAR CATHETER FOR LONG-TERM HAEMODIALYSIS

Thesis

Submitted for Complete Fulfillment in The Master Degree (M.Sc.) in

General Surgery

By

Raed Mohamed Hany Isayed (M.B.; B.Ch.)

Supervisors

Prof. Dr. Magdy Abdel-Wahab Hagag

Professor of Vascular and General Surgery, Faculty of Medicine, Cairo University

Dr. Mohamed El-Maadawy

Lecturer of Vascular and General Surgery, Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2009

ACKNOWLEDGEMENT

First and for most I thank ALLAH, who gave me everything

I would like to express my sincere appreciation to Prof. Dr. Magdy Abdel-Wahab Hagag, Professor of General and Vascular Surgery, Faculty of Medicine, Cairo University, for his continuous and unlimited support, throughout my work.

My special thanks to Dr. Mohamad El-Maadawy, Lecturer of General and Vascular Surgery, Faculty of Medicine, Cairo University, for his continued help and cooperation throughout the whole work.

I'm obliged to all my professors, my seniors, my colleagues, and all my friends who contributed to this work.

CONTENTS

	Page
•	Introduction
•	Review of Literature
	o Anatomy of the central vein 5
	o Haemodialysis
	o Types of vascular access
	o Materials, design and manufacturing
	o Preoperative assessment
	o Operative technique
	o Postoperative care
	o Complications
	o Removal of the cuffed tunneled catheters 98
•	Patients and Methods
•	Results
•	Discussion
•	Summary & Conclusion
•	References
	Arabic Summary

LIST OF FIGURES

No.	Title	Page
1	Diagram demonstrating relation of the thoracic central vein	6
2	Showing tributaries of the internal jugular vein	7
3	Shows the innominant vein	10
4	Magnetic Resonant Angiography shows the superior vena cava and its relations	11
5	Applied anatomy of the femoral vein and its relations	12
6	Shows the iliac veins	14
7	Shows the inferior vena cava with its tributaries	15
8	A PermCath has been passed by the left subclavian approach into the superior vena cava. The patient has gross mediastinal shift to the left following a previous left pneumonectomy, some years previously. The position of the catheter in the great veins may cause confusion unless the abnormal anatomy is appreciated	18
9	The arrows that cross the membrane indicate the predominant direction of movement of each solute through the membrane; the relative size of the arrows indicates the net amounts of the solute transferred. Other arrows indicate the direction of flow	20
10	Dual lumen cuffed haemodialysis catheters from B.A.R.D Company	23
11	Haemodialysis catheter components	23
12	Lumen Configuration	24
13	Haemodialysis catheter with staggered tip	25
14	Haemodialysis catheter with split tip	25
15	Suture wing	26
16	Clamp styles	26
17	Catheter Luers and Clamps	29
18	Duplex scan demonstrating internal jugular vein thrombosis	38
19	Duplex scan demonstrating Right internal jugular vein partially occluded	38
20	Dilated collateral veins over the chest wall in a female patient with an underlying occluded superior vena cava	39
21	A bull neck with loss of surface markings in the neck. Landmark-guided internal jugular puncture is more difficult in such cases	41
22	Ultrasound cross-sectional image of the right internal jugular vein (IJV) without compression through the probe. Image orientation as seen from the head of the patient. CA: carotid artery; T: thyroid; TA: thyroid artery. Depth of field of image is only 2.8 cm, so all structures are very superficial	45
23	(a) Photograph of right side of neck in a slim female; demonstrating surface anatomy. The clavicular (CH) and sternal (SH) heads of sternomastoid are marked. The dashed line indicates the approximate normal course of the internal jugular vein. (b) Diagram showing landmark approaches to the internal jugular vein	46
24	The relations between the site of vein puncture and the catheter exit site	49
25	Tunnelling	49

No.	Title	Page
26	Catheter and its complete set	51
27	Peel-away sheath with its dilator	53
28	The anatomy of the infraclavicular approach to the subclavian vein: (a) anterior view; (b) In sagittal section	55
29	Landmarks for supraclavicular approach to the subclavian vein	56
30	Femoral vein puncture site and the direction of the needle	58
31	Chest X-ray post tunneled catheter insertion via the left internal jugular vein. This lady has had a stent (arrow) inserted to open up a narrowed lower Superior Vena Cava. The tip of the catheter passes through the stent into the right atrium	65
32	Shows the sheath kinked at the angel between the right subclavian and the innominant vein	66
33	Venography shows occluded superior vena cava	67
34	A large bore long-term cuffed dialysis catheter inserted via the right internal jugular vein. Two separate puncture holes in the neck (arrows) lessens the acute angles that the catheter has to take at points X and Y ensuring the catheter is not kinked, which would reduce blood flows through it	69
35	Radiograph shows small apical pneumothorax (arrows) following attempt at left subclavian tunneled catheter placement	71
36	Axial CT image of a patient showing misplaced catheter crossing the aortic arch into the ascending aorta. P, pleura; C, catheter; SVC, superior vena cava; AA, arch of aorta; T, trachea	77
37	A tunneled catheter has been inadvertently passed into the right subclavian artery. This was not recognized by an inexperienced operator at the time of insertion. The post-procedure X-ray alerted staff to the problem as the catheter is seen crossing the midline to lie in the descending aorta (arrow)	78
38	(a) Right Tunneled jugular catheter has passed into the chest but no blood could be aspirated. The position of the catheter initially looked satisfactory on plain X-ray. (b) X-ray contrast injection revealed mediastinal placement	81
39	A 'pinch-off' sign (arrow) is seen where a catheter placed via a right subclavian approach passes beneath the clavicle. (a) A subsequent image (b) shows fracture of the catheter at this point, with the distal fragment lodged across the tricuspid valve. (c) The fragment was grasped with a loop snare via a femoral venous approach. (d) And successfully retrieved	94-95
40	Chest X-ray of a patient after attempted removal on a right subclavian tunneled catheter by an inexperienced operator. The catheter has been cut during dissection of the cuff and has migrated inwards and its proximal end is lying within the subclavian vein and the distal end in the right atrium (arrows). The internal section was retrieved radiologically via the femoral vein	102
41	The images are arranged in blocks from A to L to show operating sequence of catheter removal	102- 104
42	Dilated veins on the chest wall; a sign of superior vena cava obstruction	107
43	Duplex scan shows a patent right internal jugular vein	108

No.	Title	Page
44	Duplex scan shows a patent left internal jugular vein	109
45	Duplex scan shows a partially occluded right internal jugular vein	109
46	Duplex scan shows a totally occluded right internal jugular vein	109
47	Patient position	110
48	Skin preparation	110
49	Sterile drapes	111
50	Infiltration of local anesthesia	111
51	Catheter and catheter set	112
52	Cannulation of the internal jugular vein	113
53	Guide-wire inserted in the Sildenger needle	113
54	Removal of the needle	114
55	X-ray screen shows the passage of the wire to the right atrium	114
56	Incision was made in the skin at the desired catheter exit site	115
57	Catheter on the patient under the screen to measure the tunnel length	115
58	The tunnler passed from the exit site through the subcutaneous tissue	116
59	Performing the tunnel by the tunnler	116
60	Tip of the catheter fitted to the end of the tunnler	117
61	Pulling the tunnler	117
62	Catheter pulled through the tunnel and come out at the incision where the	117
-	wire exits the skin	
63	Passage of the sheathe over the wire	118
64	Insertion of the sheathe in the internal jugular vein over the wire	118
65	Image shows the passage of the sheath over the wire	119
66	Removal of the wire and the dilator	119
67	Closure of the peel-away sheath after removal of the dilator to prevent air	120
0,	embolism	120
68	Catheter inserted through the peel-away sheath	120
69	Peel-away sheath slide off and the catheter forced in	121
70	Catheter tip site just below the carena	121
71	Catheter flushed with heparin solution	122
72	Catheter flushed with heparin solution	122
73	Suture of the catheter wings to the skin	123
74	The catheter and the tunnel at the end of the procedure	123
75	Patient position, Skin preparation and sterile drapes	124
76	Infiltration of local anesthesia	124
77	Cannulation of the right subclavien vein	125
78	Guide-wire pass through the needle	125
79	Catheter attached to the tunnler and pulled through the tunnel	126
80	Passage of the peel-away sheath over the wire into the vein, firm holds of	126
00	the guide-wire should be maintained at all times	120
81	Site of the catheter and the tunnel at the end of the procedure	127
82	Site of the catheter and the catheter tip on the image	127
83	Infiltration of the local anesthesia after skin preparation	127
84	Venography shows that the catheter tip present in the inferior vena cava	129
85	Site of the catheter and the tunnel at the end of the procedure	129
86	Gender distribution among studied group	132
87	Type of catheter companies used in this study	132
σ_I	i ype oi cametei companies usea ili uns study	133

No.	Title	Page
88	Duplex findings in the studied group	135
89	Duplex occluded veins in the studied group	136
90	Site of insertion of catheters in the studied group	137
91	Length of involved catheters in the studied group	138
92	Catheter outcome in the studied group	141
93	Association between site of insertion of catheters and catheter outcome	143
	in the studied group	
94	Kink in the sheath	143
95	Pulling the sheath slightly out release the kink	144
96	The catheter inserted successfully to its site	144
97	The wire passes centrally	145
98	The catheter can't pass centrally	145
99	Venography from the catheter show obstruction of the superior vena	146
	cava.	
100	Right femoral approach to get an access in this patient	146
101	Left femoral catheter with the tunnel fashioned on the abdominal wall	147
102	Kink of the catheter at the level of the groin	147
103	Tunnel fashioned on the thigh	148
104	Catheter after insertion with no kink	148
105	Shows the thrombus occluded the tip of the catheter, after its removal	149
106	chest X-ray shows the catheter in its site	150
107	Small clot was the cause of catheter occlusion	150

LIST OF TABLES

No.	Title	Page
1	Shows French size of catheters related to outer diameter of the lumen in millimeters and inches	31
2	Demographic data of the studied group	132
3		133
_	Duration of ESRD (years) in the studied group	
4	Type of catheter companies used in this study	133
5	Characteristics features of catheters used in the studied group	134
6	Duplex findings in the studied group	134
7	Duplex occluded veins in the studied group	135
8	Site of insertion of catheters in the studied group	136
9	Length of involved catheters in the studied group	137
10	Association between site of insertion of catheters and	138
	length of catheters in the studied group	
11	Catheter blood flow in the studied group	139
12	Association between site of insertion of catheters and catheter blood flow in the studied group	139
13	Association between site of insertion of catheters and catheter blood flow in the Rt. I.J.V. subgroup	140
14	Catheter outcome in the studied group	140
15	Infected catheters in the studied group	141
16	Association between site of insertion of catheters and catheter outcome in the studied group	142

ABBREVIATIONS

ESRD : End stage renal disease : Internal jugular vein IJV

: Left Lt Rt

: Right: Subclavian vein SCV

ABSTRACT

Cuffed tunneled jugular catheter proved an important alternative vascular access for haemodialysis, when the arteriovenous accesses are exhausted. We conducted a prospective study on 30 patients to evaluate the outcome and performance of this catheter. In this study we describe the percutaneous technique of insertion in the jugular vein and other central veins. The problems and complications were discussed.

Keywords:

Chronic renal failure, Haemodialysis, Cuffed tunneled catheter, Central veins

INTRODUCTION

INTRODUCTION

Chronic renal failure is a complex syndrome consisting of anemia, osteodystrophy, neuropathy, acidosis, and frequently accompanied by hypertension, susceptibility to infection and generalized deterioration in organ function (**Khamis, 2008**).

Approximately 100 individual per million population reach end stage renal failure each year, the aim of all renal replacement techniques is to mimic the excretory function of the normal kidney, in haemodialysis, blood from the patient is pumped through the dialyser, which bring the blood into close contact with dialysate, flowing countercurrent to the blood (**Kumar and Clark, 2001**).

One important step before starting regular haemodialysis is preparing a vascular access, which should allow continuous high volumes of blood flow, to maximize the amount of blood cleaned during haemodialysis treatment. The three basic kinds of vascular access for haemodialysis are native arteriovenous fistula, arteriovenous graft and central venous catheter.

Cuffed tunneled haemodialysis catheters (PermCath), were initially developed as a means of short to medium term haemodialysis access; while a more permanent form of access such as an arteriovenous fistula was maturing. The first report demonstrating their effectiveness in this setting was published by Duke University medical center in 1988 (**Shwab** *et al.*, **1988**).

There is a significant and still rising number of haemodialysis patients whom pose serious problems of access creation and maintenance. Easy and quick implantation of central venous catheter

seems to be an alternative to complex and time consuming surgical procedures (Volker, 2003).

In addition, the expedience of using a cuffed haemodialysis catheter has contributed to complacency among nurses and doctors. Opening a haemodialysis port is easier than needling a fistula and inserting a line is often easier than arranging for an arteriovenous fistula or synthetic graft (Mark et al., 2001).

These catheters are usually constructed of silicon or silastic elastomer, which is much softer and pliable than the material generally, used for acute haemodialysis catheters (Steve and Gerald, 1999).

The right internal jugular vein is seen to be the ideal vein for haemodialysis catheter access. It runs straight down to the superior vena cava which obviously reduces the risk of mal position of the catheter. The left internal jugular vein catheter has to over come two rights angles to make its way down to the superior vena cava. Subclavian vein cannulation is burdened with 10% rate of sever acute complications, therefore, a subclavian haemodialysis access should not be selected as long as other central veins can be punctured (Volker, 2002).

The placement of the haemodialysis catheters is associated with a predictable list of complications including pneumothorax, air embolism, arterial and great vein perforation, nerves and thoracic duct injury, cardiac arrhythmia. Catheter dysfunction and infection are the primary long term complications (**Gerald** *et al.*, **2006**).

REVIEW OF LITERATURE