Feasibility of US-guided Radiofrequency Ablation in treatment of early Breast Cancer

Essay

SUBMITTED FOR PARTIAL FULFILMENT
OF MASTER DEGREE IN RADIODIAGNOSIS

BY

MOHAMED HAMDNA ALLAH EL GHOBASHY

(M.B.,B.CH., CAIRO UNIVERSITY)

SUPERVISORS

DR.SOHA TALAAT HAMED

ASSIST PROF. OF RADIODIAGNOSIS
FACULTY OF MEDICINE
CAIRO UNIVERSITY

DR. MOHAMED HAMED SHAABAN

FACULTY OF MEDICINE

CAIRO UNIVERSITY

CAIRO UNIVERSITY

2009

Acknowledgement

First and foremost, thanks to **God**, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and extreme appreciation to **Dr.Soha Talaat** Assistant Professor of Radiodiagnosis, Faculty of Medicine, Cairo University for her kind supervision, kind advice constructive encouragement, generous help and guidance throughout the whole work which could not be a fact, without her guidance and kind help.

I owe too much to **Prof Ahmed Samy & Prof Dorria Salem** who helped and supported me throughout this work and encouraged me a lot

I would like to express my great thanks to **Dr. Mohamed Hamed**, Lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University for his kind advice and help throughout the whole work.

I would like to express my respect, appreciation and thanks for my family for their assistance, encouragement and their prayers for me.

TABLE OF CONTENTS

Topic	Page
Introduction And Aim Of The Work	1
Anatomy Of The Breast	4
Pathology Of Breast Cancer	18
Minimally Invasive Approaches for Diagnosis and Treatment of Early-Stage Breast Cancer	30
Physics of Radiofrequency ablation (RFA)	56
Review of RFA in breast cancer	75
Discussion	124
Summary and conclusion	127
References	130
Arabic Summary	143

LIST OF ABBREVIATIONS

• ABBI	Advanced breast biopsy instrumentation
• ATEC	Automatic Tissue Extraction and Collection
• BCS	Breast conserving surgery
• BCT	Breast conserving surgery
• CNB	Core needle biopsy
• CT	Computed tomography
• DCIS	Ductal carcinoma in situ
• ER	Estrogen receptor
• FNAC	Fine needle aspiration cytology
• FUS	Focused ultrasound
• H&E	Haematoxylin and eosin
• HIFU	High intensity focussed ultrasound
• LCIS	lobular carcinoma in situ
• MIBB	Minimally invasive breast biopsy
• MRI	Magnetic resonance imaging
• NADH	Nicotinamide adenine dinucleotide
• NOS	Not other wise specfied
• PR	Progesterone receptor
• RFA	Radiofrequency ablation

• **SLCB** Single large core biopsy

- TDLU terminal duct lobular unit
- **US** Ultrasound
- VAM Vacuum assisted mammotome

LIST OF FIGURES

Fig.No.	Title	Page
		NO.
1	The position of the mammary line	4
2	The development of the mammary gland tissue	5
3	The suspensory ligaments	7
4	The blood supply and venous drainage of the breast	8
5	The intra- and extralobular ducts	9
6	Histology of a lobule of the breast	10
7	The ductal system of the breast	10
8	The boundaries of the axilla	11
9	The principal pathways of lymphatic drainage of the	12
	breast	
10	The lymph nodes of the axilla	13
11	Fine needle aspiration of solid mass	33
12	Ultrasound-guided core biopsy of a subtle spiculated	37
40	mass or area of architectural distortion Patient in the upright position for stereotactic biopsy	44
13	The Mammotome system in use for biopsy of the	41
14	upper breast in the craniocaudal position using an	41
	upright stereotactic system	
15	The Fischer table with a patient in the prone position	42
16	The Mammotome needle is inserted beneath the	42
	lesion, thus offering a clear view of both lesion and	
17	needle. Mammotome needle in place with open biopsy	43
17	window	43
18	Perfect alignment of the needle and lesion on	43
	longitudinal image	
19	Patient lying on the biopsy coil and MRI table	44
20	MRI-guided breast biopsy	44
21	MR guided Complete removal of a suspicious lesion	45
	in a 37-year-old patient using vacuum-assisted biopsy	
22	The Intact disposable wand (probe) and driver	48
23	Diagram of how the Intact system operates	48
20		40
24	Mammotome biopsy probes (a) ultrasound EX	48
	system and (b) stereotactic ST system	

25	Close-up view of the Mammotome probe tip	49
26	A benign fibroadenoma in a 20-year-old woman	49
20	7. zemgn nzredaenema m a ze year era meman	49
27	Ultra sound guided complete removal of the mass by mammotome	50
28	Ionic agitation during RFA	68
29	The original needle design	68
30	Various radiofrequency (RF) electrodes	69
31	RF 3000 Boston Scientific	70
32	Rita 1500 generator with 7 cm needle application facility	70
33	Schematic illustration of percutaneous radiofrequency (RF) ablation in the liver.	71
34	Hooked array radiofrequency needles& Internally cooled RF electrode	72
35	Proper placement of grounding pads for RF ablation	73
36	Temperature distribution recorded during temperature controlled RF breast ablation.	74
37	Multiple-needle electrode for radiofrequency ablation. Radially spaced wires extend from deployed needle	78
38	Graph shows changes in breast cancer tissue impedance and temperature during creation of a thermal lesion by radiofrequency energy	78
39	photograph of LeVeen multiple array radiofrequency ablation (RFA) needle electrodes	81
40	A specimen photograph after wide local excision of a T1 breast tumor (arrows) treated with percutaneous radiofrequency ablation immediately prior to resection.	81
41	Nicotinamide adenine dinucleotide (NADH)- diaphorase staining of breast tumor cells treated with radiofrequency ablation	82
42	Postgadolinium magnetic resonane image scans demonstrate successful radiofrequency ablation	86
43	Macroscopic appearance of excised specimen after successful radiofrequency ablation	86
44	Representative histologic findings of ablated breast tumors	87
45	Photograph of the tip of the RITA Starburst XL needle electrode	90
46	Intraoperative photograph shows insertion of the needle electrode into the lesion	90
47	Longitudinal sonogram shows measurements of the distance between the tumor & skin and chest wall	91

40	IIC manifesing to analyse accurate placement of the	04
48	US monitoring to ensure accurate placement of the	91
	RF device in the geometric center of the tumor to be ablated	
49	Longitudinal sonogram show decreasing visibility of	02
49	the target lesion during RF ablation	92
50	Photographs of gross breast tissue specimens	92
30	resected after RF ablation.	92
51	Monitoring of temperatures at the tip of the RF	93
	device prongs	00
52	RITA Model 70 (Star-Burst); b: RITA Model 1500 RF	96
_	generator	
53	Longitudinal sonograms show decreasing visibility	96
	of the target lesion during RF ablation.	
54	specimen after wide excision of a T1 breast	97
	tumor treated with percutaneous RF ablation	
55	Technique of performing breast radiofrequency (RF)	100
	ablation	404
56	Intraoperative breast ultrasound	101
57	Radiofrequency ablation: failed case	105
58	MR images show visualization and segmentation of	109
	the RF ablation–induced lesion in three	
50	perpendicular planes	400
59	Axial MR images show successful RF ablation in 55- year-old woman with dense breasts.	109
60	Images show residual enhancement in 66-year-old	110
60	patient with fatty breasts.	110
61	Technique of performing breast RF ablation	111
62	Macroscopic appearance of excised	111
02	specimen after breast RF ablation	111
63	Needle insertion and subcutaneous injection of 5%	118
	glucose	110
64	Ultrasonogram before (a) and after (b) injection of 5%	119
	glucose.	
65	MRI before (left) and after (right) RFA	119
66	Cosmetic Appearance after RFA	120
67	Comparison of the mammography performed prior to	121
	treatment and 1 month after RFA procedure	. — '
68	Mammography After 6 months of RFA	121
69	Pre & post operative Magnetic Resonance Imaging .	122
	, , , , , , , , , , , , , , , , , , , ,	

LIST OF TABLES

NO.	Table	Page
1	Incidence Of Breast Cancer In Different Quadrants	16
2	Patient and tumour characteristics in ten studies on radiofrequency ablation for breast cancer	111
3	Technical settings in ten studies on radiofrequency ablation for breast cancer	113
4	Excision and histological characteristics in ten studies on radiofrequency ablation for breast cancer	115

Abstract

Since the use of radical mastectomy, new treatments have been developed to reduce the amount of tissue removed during surgery resulting in a better cosmetic outcome. The surgical treatment for small breast cancer nowadays is mostly lumpectomy followed by radiotherapy. This procedure is combined with sentinel lymph node mapping which decreases the number of unnecessary axillary lymph node dissections. Randomized studies have documented similar survival rates between patients undergoing radical or modified radical mastectomy and breast conserving therapy .As the management of breast cancer evolves towards less invasive treatments, several techniques have been developed to improve local eradication of breast tumours. One of the most promising of the non-invasive ablation techniques is radiofrequency ablation (RFA). RFA is produced by frictional heating. Electrode tips placed in the lesion produce a high-frequent current that flows into the surrounding tissue initiating ionic agitation that causes heat and, in the end, cell destruction. RF ablation is a promising minimally invasive treatment of small breast carcinomas, as it can achieve effective cell killing with a low complication rate. Further research is necessary to optimize this image-guided technique and evaluate its future role as the sole local therapy. However, non-surgical ablation techniques still have a number of problems with regard to determination of 100% tumor cell killing and assessment of tumor margins and ability to follow local recurrence. To achieve wide acceptance, non-surgical ablation techniques must achieve results equivalent to those of conventional breast conserving treatment (BCT) in local control and survival.

Keyword breast cancer - RFA – minimally invasive ablation techniques

Introduction:

The surgical management of breast cancer has gradually evolved over the past century from the exclusive use of radical mastectomy to the present-day prevalence of segmental mastectomy followed by adjuvant radiation and/or chemotherapy. (Ahmed and Goldberg, 2004)

Since the original description of radical mastectomy, there have been continued efforts to reduce the amount of tissue removed during the surgical treatment of small breast cancer. Currently, the standard surgical treatment for early stage (T1N0M0) cancer is lumpectomy followed by radiation therapy. There is a similar trend to decrease the number of unnecessary axillary lymph node dissections through the widespread use of sentinel lymph node mapping. (*Fornage et al., 2004*)

Randomized studies have documented similar survival rates between patients undergoing radical or modified radical mastectomy and breast conserving therapy. (*Fisher et al, 1995*)

Within the context of minimally invasive treatments for breast diseases in general and breast cancer in particular, there are several proposed image-guided techniques. Such currently available technologies include cryotherapy and hyperthermia with use of laser irradiation , microwaves , high-intensity focused US waves , and radiofrequency (RF) electrical currents . *(Fornage et al , 2004)*

Introduction

Within all minimally invasive approaches used in the treatment of early-stage breast cancer, the most extensive work and progress have been made with RFA. RFA destroys the tumor with heat. A radiofrequency probe (15-gauge) with RFA electrodes is inserted in the tumor, and an alternating high-frequency electric current (400–500 kHz) is administered. The heat that is generated affects the cell membrane's fluidity and the cytoskeleton proteins and finally acts on the nuclear structure, resulting in the interruption of cell replication. This finally leads to irreversible tumor destruction, as tumor cells are more susceptible to heat than are normal cells. (*Vlastosa et al.*, 2007)

The main inclusion criteria was the presence of an invasive breast cancer of 2.0 cm or less in greatest diameter. The tumor had to be clearly identified and unequivocally measurable at US. To avoid the risk of injury to the skin and the chest wall, a distance of at least 1 cm between the tumor and the skin and between the tumor and the chest wall was required. (Fornage et al., 2004)

There is increasing demand for minimally invasive and nonsurgical treatment methods for patients with small breast cancer. Radiofrequency (RF) ablation is the most promising among several non-surgical ablation techniques in the treatment of breast cancer. Several pilot studies of RF ablation therapy are currently in progress in Japan as well as USA. However, non-surgical ablation techniques still have a number of problems with regard to (a) inability to precisely determine tumor size, (b) determination of 100% tumor cell killing, (c) ability to follow local recurrence, and (d) cosmetic outcome. To achieve wide acceptance, non-surgical

Introduction

ablation techniques must achieve results equivalent to those of conventional breast conserving treatment (BCT) in local control and survival. (Noguchi et al , 2006)

RF ablation is a promising minimally invasive treatment of small breast carcinomas, as it can achieve effective cell killing with a low complication rate. Further research is necessary to optimize this image-guided technique and evaluate its future role as the sole local therapy. (*Khatri et al.*, 2007)

Aim of the study:

To determine the feasibility and safety of ultrasonographically (US) guided percutaneous radiofrequency (RF) ablation in the local treatment of invasive breast carcinomas 2 cm or less in greatest diameter .A review of literature regarding all aspects of the technique will be analyzed .

Anatomical background

DEVELOPMENT:

The mammary line (crest, ridge) is an ectodermal (epidermal) thickening that appears during the 4th–5th week of development. It extends from axilla to groin, on each side of the body (Fig.1). only a small portion of the line persists in the thoracic region. (Sadler, 2004).

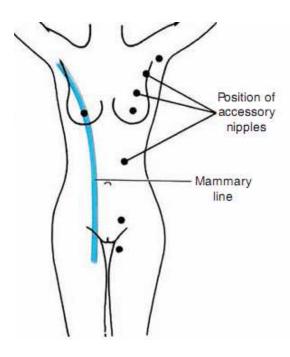
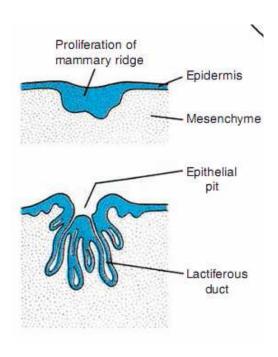



Fig.1. The position of the mammary line (Sadler, 2004).

Invasion of the underlying mesenchyme (dermis) in the 6th week gives rise to the mammary buds. These lengthen, branch and are canalised to form the lactiferous ducts. The lactiferous ducts come together in a depression on the surface of the skin called the mammary pit. Shortly after birth the pit is converted to the nipple (Fig.2) (Moore and Persaud, 2003).

Anatomy

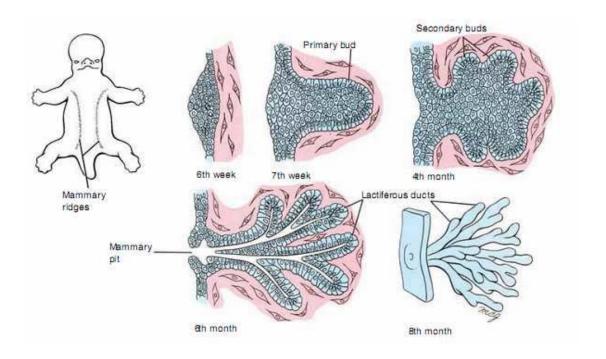


Fig.2 The development of the mammary gland tissue (Larsen, 1993).

Persistence of remnants of the mammary line may give rise to accessory nipples (polythelia). They are found along of the mammary line and are commonly mistaken for moles. An extra breast develops if a remnant of the mammary line completely develops into a breast (polymastia) . Amastia is the congenital