A study on some oxygen or nitrogen heterocyclic ketones with expected biological activities

Thesis Submitted by

Ghazala Abdullah Al-Shibani

Demonstrator of Organic Chemistry, Faculty of Science, 7th October University, Libya

For M.Sc.Degree in Chemistry

Thesis advisors

Prof. Dr.

Mounir Abdo Ibrahim Salem

Professor of Organic chemistry, Faculty of Science, Ain Shams University

Ass.Prof.Dr.

Magda Ismail Marzouk

Associated Professor of Organic chemistry, Faculty of Science, Ain Shams University

Dr.

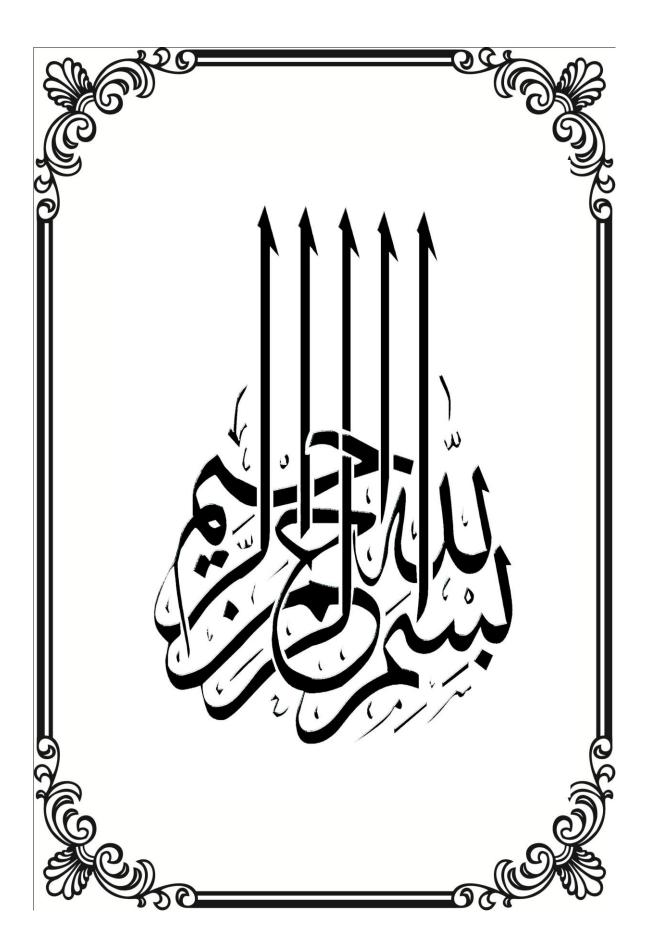
Marwa Sayed Salem

Lecturer of Organic chemistry, Faculty of Science,
Ain Shams University

2013

A study on some oxygen or nitrogen heterocyclic ketones with expected biological activities

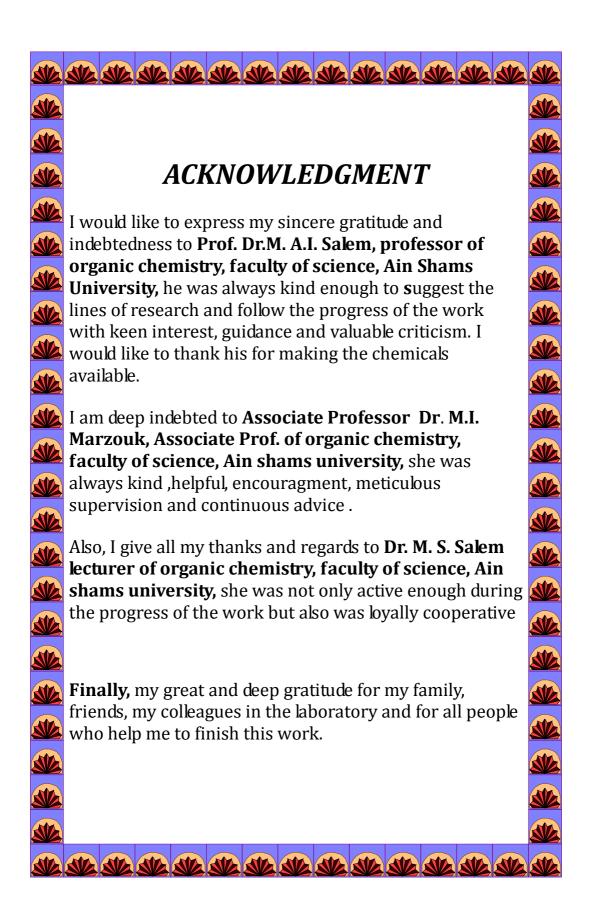
By


Ghazala Abdullah Al-Shibani

B. Sc. (Chemistry)

Thesis Advisors Mounir Abdo Ibrahim Salem	Approved
Faculty of Science, Ain Shams University.	
Magda Ismail Marzouk	•••••
Faculty of Science, Ain Shams University.	
Marwa Sayed Salem	•••••
Faculty of Science, Ain Shams University.	

Head of Chemistry Department


Prof. Dr. Maged Shafik Antonious

CONTENTS

Acknowledgement	
Summary	
Introduction	
Synthesis of Pyrimidinone and Pyrimidine thione	1
Biginelli's Reaction	1
From Chalcones	4
From Vinylarylquinazoline derivatives	7
From β-Diketone	7
From Coumarins	8
From Isothiocyanate derivatives	8
From Acetylenic Esters	9
From Difluoroacrylates	10
From β-aroyl propionic acid	10
Microwave Irradiation	10
From Arylidene	12
Reactions of Pyrimidinethiones	13
Reaction with oxalylchloride	13
Reaction with aromatic aldehyde	13
Reaction with arylidene	16
Reaction with carbon disulphide	17
Reaction with ammonium acetate	18
Reaction with hydrazine hydrate	18
Reaction with hydroxyl amine hydrochloride	21
Reaction with Vilsmeier-Haack reaction	22
Reaction with sodium hydroxide	22
Alkylation reactions	22
Synthesis and reaction of heterocyclic fused derivatives of	33
pyrimidine-one/ or thione	
Pyranopyrimidine-one (thione) derivatives	33
Pyridopyrimidine derivatives	35
Furopyrimidine	36
Thienopyrimidinone derivatives	39
Pyrazolopyrimidine derivatives	42
Thioazolopyrimidine-(one)thione	45
Biological Activities	46
Discussion	49

Figures	124
Experimental	266
Publication	
References	285

Summary

Tetrahydropyrimidinone and tetrahydropyrimidinethione derivatives have broad biological activities as antibacterial, antiviral, anti-tumor, antihypertensive. Condensation of aldehydes, ethyl acetoacetate and thiourea or urea using sodium ethoxide or piperidine as a catalyst gave 5-acetyl thioxodihydropyrimidine derivative 1, while carrying out the reaction in NH₄Cl as a catalyst under solvent-free condition at 100°C gave ethyl 1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives 2a-d.

Scheme1

The alkylated derivatives **3-6** named ethyl 6-(benzo [d][1,3]dioxol-5-yl)-2-(ethylthio)-4-methyl-1,6-dihydropyr-imidine-5-carboxylate **3a**, ethyl 6-(3,4-dimeth-oxyphenyl)-2-(ethylthio)-4-methyl-1,6-dihydro-pyrimidine-5-carboxylate **3b**, ethyl 5-(benzo[d][1,3]dioxol-5-yl)-2-imino-7-methyl-3,5-di-hydro-2*H*-thiazolo[3,2-a]pyrimidine-6-carboxylate **4**, ethyl 6-(benzo[d][1,3]dioxol-5-yl)-1-(3-chloro-2-hyd-roxypropyl)-2-

mercapto-4-methyl-1,6-dihydro-pyrimidine-5-carboxylate **5**, ethyl 1-acetyl-6-(benzo[d][1,3]dioxol-5-yl)-4-methyl-2-thioxo-1,2,3,6-tetrahydropyrimidine-5-carboxylate **6** were synthesized from the reaction of tetrahydropyrimidine **2a,c** with mono halogenated compounds such as ethyl iodide, chloroacetonitrile, epichlorohydrin, acetyl chloride/or acetic anhydride.

Reaction of the pyrimidinethiones 2a,c with various bifunctional centers, such as ethyl bromoacetate, chloroacetyl chloride and chloroacetic acid in K_2CO_3 or DMF afforded the same cyclic sole products namely ethyl 5-aryl-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2- α]pyrimidine-6-carbo-xylate 7a,b which condensed with p-fluorobenzaldehyde in the presence of a mixture of acetic acid, acetic anhydride and sodium acetate to afford 3,3'-[(4-fluorophenyl)methylene]bis-[ethyl 5-(benzo[d] [1,3]dioxol-5-yl)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo [3,2-a]pyrimidine -6-carboxylate] 11.

The reaction of pyrimidinethione **2a** with chloroacetyl chloride in KOH or NaOEt afforded ethyl 6-(benzo[d][1,3]dio-xol-5-yl)-2-(2-chloroacetylthio)-4-methyl-1,6-dihydropyrimidine-5-carboxylate **8** and the cyclic adduct ethyl 5-(benzo[d][1,3]dioxol-5-yl)-7-methyl-2-oxo-3,5-dihydro -2*H*-thiazolo [3,2-a]pyrimidine-6-carboxylate **9** respectively.

Scheme 2

The condensation of the pyrimidinethiones **2a,c** and the thiazolo pyrimidine **7a** with p-fluorobenzaldehyde in the presence of acetic acid, acetic anhydride and sodium acetate gave 3,3'-[(4-fluorophenyl)methylene]bis-[ethyl4-aryl-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate]**10a,b**.

The reaction of **2a** with oxalyl chloride in dry benzene afforded ethyl 5-(benzo[d][1,3]dioxol-5-yl)-7-methyl-2,3-dioxo -3,5-dihydro-2*H*-thiazolo[3,2a]pyrimidine-6-carboxylate **12**.

Oxidation of **2a,b** gave different products depending on the oxidizing agents that used such as potassium permanganate solution, hydrogen peroxide, sodium nitrite, or potassium dichromate to give compound **2b**, and 4-(benzo[d][1,3]dioxol-5-yl)-6-methyl-2-oxo-1,2-dihydropyrimidine-5-carboxylic acid **13**, ethyl 4-(benzo[d][1,3]dioxol-5-yl)-2-(4-(benzo[d][1,3]dioxol-5-yl)-5-(ethoxycarbonyl)-6-methyl-pyrimdin-2-yloxy)-6-methylpyrimidine-5-carboxylate **14**, ethyl 4-aryl-2-(4-aryl)-5-(ethoxycarbonyl)-6-methyl-3,4-dihydropyrimdin-2-yldithio)-6-methyl-3,4-dihydropyrimidine-5-carboxylate **15a,b**, and bispyrimidine sulfoxide derivative **16** respectively.

Scheme 3

Reaction of **2a,c** with POCl₃/DMF under Vilsmeiere-Haack reaction afforded the 6-aryl-1-formyl-4-(2-oxoethylidene)-2-thioxohexahydropyrimidine-5-carboxylic acid derivatives **17a,b**.

Chlorination of the dihydropyrimidinone **2b,d** with PCl₅/POCl₃ mixture afforded the corresponding ethyl 6-aryl-2-chloro-4-methyl-1,6-dihydropyrimidine-5-carboxylate **18a,b** which reacted with thiourea to afford ethyl 6-aryl-4-methyl-2-thioureido-1,6-dihydropyrimidine-5-carboxylate **19a,b** respectively.

The pyrimidinethiones **2a** reacted with hydrazine hydrate, semicarbazide hydrochloride, and sodium hydroxide to afford the corresponding compound **20**, 1-(6-(benzo[d][1,3]dioxol-5-yl)-4-methyl-1,6-dihydropyrimidi-ne-5-carbonyl)semi-carbazide **21** and 4-(benzo[d][1,3]dioxol-5-yl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid **22**.

Antimicrobial, anticancer and antioxidant activities of some compounds were investigated using the standard method against different bacterial, fungal strains, anticancer and antioxidant in comparison with standard drugs and the results shows from moderate to high reactivity.

The synthesized newly products were well established according the following arguments:

- a) Elemental analysis
- b) Spectroscopic studies. IR, ¹H-NMR, ¹³C-NMR and mass spectra.

Scheme 4

Synthesis of Pyrimidinone and Pyrimidine thione

1-Biginelli's Reaction:

In 1893 Italian chemist Pietro Biginelli reported on the acid-catalyzed cyclocondensation reaction of ethyl acetoacetate, benzaldehyde and urea or thiourea ^[1]. The reaction was carried out simply by heating a mixture of the three components dissolved in ethanol with a catalytic amount of HCl at reflux temperature. The product of this novel one-pot, three-component synthesis that precipitated on cooling of the reaction mixture was identified correctly by Biginelli as 3,4-dihydropyrimidin-2(1*H*)-one.

The synthetic potential of this new heterocycle synthesis (now known as Biginelli reaction) remained unexplored for quite some time. In the 1970s and 1980s interest slowly increased, and the scope of the original cyclocondensation reaction was gradually extended by variation of all three building blocks, allowing access to a large number of multifunctionalized dihydropyrimidines [26,45,137,112,139,129,92]

CHO
$$\begin{array}{c} X \\ X \\ X \\ X \\ 1a \end{array}$$
+ CH₃COCH₂COOEt + H₂N NH₂

$$\begin{array}{c} 3a, b \\ X \\ X = a = 0, b = S \end{array}$$
COOEt
$$\begin{array}{c} Ar \\ CH_3 \\ HN \\ NH \\ X \\ 4 \end{array}$$

Biginelli's reaction for the synthesis of pyrimidine-2thiones and their derivatives involved three components, one-pot condensation of a β-ketoesters with an aldehyde and thiourea under strongly acidic conditions [26] and several improved procedures have recently been reported using [13] LiBr, VCl₃, ZrCl₄ , HPAS (heteropolyacids) $H_3PMO_{12}O_{40}$ [133], IBX(Iodoxy benzoic acid) [131] , $P_2O_5/$ MeSO₃H^[7], calcium sulfate dihydrate ^[133] (CaSO₄.2H₂O), CAN(Ceric ammonium nitrate) [38] , metal phosphate (NaH₂PO₄, KH₂PO₄) [69], PPA(Phenyl phosphonic acid)/CH₃CN ^[9], CuCl₂.2H₂O/ HCl^[125], Fe(HSO₄)₃ ^[48], SrCl₂ . $6H_2O/HCl^{[88]}$, $SiO_2-Cl^{[58]}$, ionic liquid^[69], $AlCl_3/conc$. SBSSA (Silica-bonded-S-sulfonic acid)^[94], Amberlyst 15 DR^[128], chlorotrimethylsilane ^[127] (TMSC)/ [hmim]HSO₄^[66], dilute HCl ^[69] and Cyanuric DMF. Chloride^[15], as catalyst. However, most of these reactions required expensive reagents, strongly acidic conditions, high temperatures and moreover, these methods involved three components.

(i) LiBr, CH₃CN,reflux; (ii) VCl₂ / CH₃CN, reflux; (iii) HPAS, AcOH / reflux; (iv) IBX, $60\,^{\circ}$ C, H₂O; (v) P₂O₅ / MeSO₃H, rt, 5-15 min; (vi) CaSO₄.2H₂O; (vii) (CAN) neat, 80-90 $^{\circ}$ C; (viii) Metal Phosphate, glacial AcOH, $40\text{-}50\,^{\circ}$ C; (ix) PPA / CH₃CN,reflux; (x) CuCl₂.2H₂O-HCl,Cround 2-5 min; (xi)Fe(HSO₄)₃, CH₃CN, reflux; (xii)Fe(HSO₄),Solvent Free $100\,^{\circ}$ C; (xiii) SrCl₂ 6H_2 O, HCl; (xiv) SiO₂-Cl, Solvent Free; (xv)Ionic Liquid, $100\,^{\circ}$ C, 0.5 h; (xvi) AlCl₃, Conc. HCl; (xvii) TMSC, DMF; (xviii) SBSSA; (xix)Amberlyst 15 DRY.

(i) ZrCl₄, Ethanol, 4-6 h; (ii) Cyanuric Chloride, EtOH

In continuation of the synthesis of fused pyrimidines ^[72,73], D. Nimalini. ^[35] reported an efficient and high yielding method for two components, one-pot synthesis of pyrimidine-2-thiones using chromium (III) chloride as catalyst under aqueous conditions, which not only is very