INTERSTITIAL CELLS OF CAJAL: A REVIEW REGARDING MORPHOLOGY, LOCATION AND FUNCTIONAL SIGNIFICANCE IN DIFFERENT SYSTEMS OF THE BODY

Essay
Submitted for the full Fulfillment of the MSc Degree in
Histology

By: Doaa Mabrouk Khalid Ali

M.B, B.CH
Faculty of Medicine – Misr University for Science and Technology

Under the Supervision of

Prof. Dr. Sanaa Ahmed El-Sherbiny

Professor of Histology Faculty of Medicine Mansoura University

Dr. Menna Mohamed Abdel-Dayam

Assistant Professor of Histology Faculty of Medicine Cairo University

Dr. Mira Farouk Yousef

Lecturer of Histology Faculty of Medicine Cairo University

MUST 2010

Acknowledgements

Before all and after all, thanks are to "ALLAH", the most gracious and most merciful, for his endless and countless gifts.

I am greatly honored to express my deep respect and gratitude to my advisor, **Prof. Dr. Sanaa Ahmed**, Professor of Histology, Faculty of Medicine, Mansora University for her continuous assistance, valuable guidance and the time she freely gave to me to select this topic. I thank her very much for everything she did for me during this work.

I wish to express my thanks and sincere gratitude to **Prof. Dr. Menna Mohamed,** Professor of Histology, Faculty of Medicine, Cairo University, for her continuous help, and valuable suggestions. She did her best for this work to come out as it is. I thank her very much.

My deep thanks to **Dr. Mira Farouk,** Assistant Professor of Histology, Faculty of Medicine, Cairo University for her guidance and meticulous revision. I will never forget her continuous caring and fruitful teaching and allowing me to present respectable work.

Special thanks to **Prof. Dr. Nadia Mustafa**, Professor of Histology, Faculty of Medicine, Cairo University for her motherly attitude and continuous care throughout this work, as well as through out all my daily work at the university. She has always provided me with her guidance, even without asking.

I also thank **Dr. Inas Abd El Rahim**, Professor of Community & Family Medicine, Faculty of Medicine, Ain Shams University for her help and cooperation.

Thanks a lot to my dear husband Mohamed Tareq for his support and my dear brother Osama Mabrouk for his kindly help.

Finally, no words can describe the support and encouragement of my parents. They gave me all I learnt in my life, and through their care, I arrived at this place.

> Doaa Mabrouk February, 2010

ABSTRACT

Interstitial cells of Cajal (ICC) aroused much interest among neuroanatomists at the beginning of the century. These small cells are organized into networks, found in a variety of smooth muscle tissues and are now considered by many authors to be responsible for the pacemaker activity of the gut and may have novel physiological functions. This review discusses the presence of ICCs outside the gastrointestinal tract in different systems of the body especially in urinary tract, female genital system and placenta, and the new possible roles in these organs. It is important now to discover the conditions that are responsible for ICCs loss and develop new therapies to relieve patients of this problem.

Key words: interstitial cells of Cajal – ICC – urinary system– female genital system –functional significance – c-kit.

List of Contents

	Page	
Acknowledgements		
Abstract		
List of abbreviations	I-П	
List of figures	III-IV	
Introduction and aim of the work	1-2	
Review of literature	3-65	
 Histological structure of the upper urinary tract 	3	
 ICC and ICC- like cells 	9	
 Identification of ICCs 	10	
 C-kit immunoreactivity in other cell types 	16	
 Organization of ICCs 	17	
 ICC in other tissues 	25	
 Ultrastructure criteria for identification 	30	
 Functional histology of ICCs 	34	
 Interstitial cells of Cajal at the clinical and scientific 	54	
interface	61	
 ICCs loss and the possible involved factors during 	U1	
pathological process	62	
 Applied therapies for ICCs 	02	
Summary and conclusion	66-67	
References		
Arabic summary		

LIST of ABBREVIATIONS

∞-SMC: Alpha smooth muscle actin

μm: Micro meter

AA1: Anti-tryptase antibody 1

ACK2: Anti-kit antibody

ATP: Adenosin tri-phosphate

CC1: Chymase-containing mast cell 1 cGMP: Cyclic guanosine monophosphate

C-kit: Stem cell factor receptor

COX-2: Cyclo- oxygenase 2

CSF: Colony stimulating factor

e.g: For example Embryonic day

ER-∞: Estrogen receptor alpha EM: Electron microscopy

FITC-avidin: Fluorescein-isothio-cyanate labeled avidin

FT: Fallopian tube

GIST Gastrointestinal stromal tumor

GIT: Gastrointestinal tract
GTP: Guanosine Triphosphate
Hx & E: Hematoxylin and eosin

IC: Interstitial cell

ICC- CM: Interstitial cell of Cajal – circular muscle

ICC- DMP: Interstitial cell of Cajal – Deep muscular plexus ICC- IM: Interstitial cell of Cajal – Intramuscular muscle ICC- LM: Interstitial cell of Cajal –longitudinal muscle

ICC- MY: Interstitial cell of Cajal – Myenteric ICC- SM: Interstitial cell of Cajal – Submucosal

ICC- SMP: interstitial cell of Cajal – Submucosal plexus

ICC: Interstitial cell of Cajal

ICC-AP: Interstitial cell of Cajal- Auerbach's plexus

ICC-SS: Interstitial cell of Cajal – Subserosa

ICLC: Interstitial Cajal like cell

IF: Immunofluroscence

IGF-1: Insulin- like growth factor 1iNOS: Inducible nitric oxide synthase

KDa: Kilo dalton

M2 and M3: Muscarinic receptors

mm: Mille meter

NCLM: Non convential light microscope

NK1 and NK3: Neurokinin receptors

NO-cGMP: Nitric oxide- Cyclic guanosine monophosphate

NOD:
Non obese diabetic
NOS:
Nitric oxide synthase
PR-A:
Progesterone receptor A
Specific purinergic receptor
PCJ:
Pelvi-calyceal junction

PDGF: Platele derived growth factor Pt stain: Pararosaniline-toluidin blue

RIC: Renal interstitial cell
RNA: Ribonucleic acid
RP: Renal pelvis
SCF: Stem cell factor

sGC Soluble guanylate cyclase SI/SI^d: Mutant phenotype mouse

SMC: Smooth muscle cell

TEM: Transmission electron microscopy

UPJ: Uretero-pelvic junction

UT: Urinary tract

UUT: Upper urinary tract

VIP 1: Vasoactive intestinal polypeptide receptors 1

Vs: Versus

W/W Mutant phenotype mouse

W: White spotting gene

List of Figures

Figure number	Title	page
(1)	Photomicrograph of the ureter	4
(2)	Arrangement of the smooth muscle cells within the upper urinary tract (EM)	5
(3)	Silver impregnation of ICLC	١٢
(4)	Myometrium ICLC (immunofluorescence)	14
(5)	Tubal- ICC (immunofluorescence)	14
(6)	C-kit-positive mast cell in Fallopian tube	17
(7)	C-kit (red fluorescence) in mouse ureter	19
(8)	C-kit in the suburothelium of bladder rat (immunohistochemistry)	20
(9)	C-kit in the detrusor muscle of rat (immunohistochemistry)	21
(10)	C-kit in human myometrium (immunohistochemistry)	22
(11)	C-kit in human Fallopian tube (immunohistochemistry)	23
(12)	Human placental ICLCs	۲ ٤
(13)	C-kit positive cells in the vas deferens	26
(14)	C -kit positive cells in the prostate	2٧
(1°)	EM of ICLCs of the guinea pig UUT	٣١

(16)	Photomicrograph of wall of oviduct	٤ ٤
(17)	ICLC stained positive for (ER-∞) and (PR-A)	46
(18)	Human myometrium. Double immunofluorescence for CD 117/CD34	50
(19)	Close apposition between t-ICC and macrophage (EM)	51
(20)	Development and plasticity of ICC	56
(21)	Pathway of GIST formation	64

Historical Introduction

At the end of the nineteenth century **Ramon Cajal** observed unique cells at the terminus of the autonomic nervous system in the acini of salivary glands, in the connective tissue of the pancreas, between the glands of Lieberkuhn, in the intestinal villi and within the tunica muscularis of the gastrointestinal tract (GIT). He used methylene-blue vital staining and Golgi impregnation method. These cells had processes that formed a network that was intercalated between nerve terminals and effector cells. Although Cajal could not see an axon among the cytoplasmic processes of these cells, he considered them possible accessory neurons. Cajal believed that the structures he identified had a role in peripheral neurotransmission due to their anatomical locations and named them interstitial cells of Cajal (ICCs) (Cajal, 1911). As time passed due to the lack of diagnostic criteria, ICCs were considered as fibroblast, myoid cells or schwann cells. The embryonic origin of interstitial cells had remained a controversial issue ever since their discovery.

Later, ICCs were intimately found associated with enteric neurons. Therefore, some authors considered them to be of neural or glial nature and thus of neural crest origin. Recently, ICCs have been shown to arise from the local gut mesenchyme and not from the neural crest in both mammals and birds using the chick-quail transplantation. ICCs were identified by means of a chicken *c-kit* nucleic probe which cross-reacts with the quail *c-kit* gene product. This observation was confirmed by culturing neural tissue from chick embryo guts at embryonic day 3-4 (E3-E4) on the chorio-

allantoic membrane of chick hosts at (E7) for 7 days. The typical ICCs as defined at the EM level and by their expression of the *c-kit* receptor were developed in the gut wall in complete absence of enteric innervation (*Young et al., 1996; Lecoin et al., 1996*).

Also the positivitiy of ICCs to the intermediate filament vimentin and the lack of neural crest markers such as S-100 protein and neurofilament are compatible with their mesodermal differentiation (*Kindblom et al.*, 1998). So it could be concluded that the ICCs were of mesodermal origin and developed independently from enteric neurons with which they later established anatomical and functional relations.

Aim of the work

This essay aims to throw light on:

- Histological and ultrastructural identification of ICCs.
- Distribution and sites of ICCs in different systems of the body.
- Significance of these cells in some systems of body especially in the urinary tract, Fallopian tube and placenta.

Histological structure of the upper urinary tract (UUT)

Confocal and low magnification ($< \times 5000$) electron microscopy were used to establish the general organization of the wall of the guineapig and human upper urinary tract (Szabó, 1992; $Klemm \ et \ al.$, 1999).

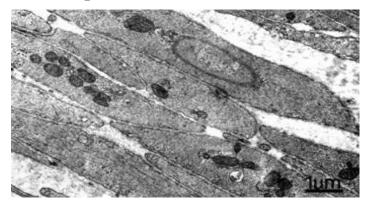
The histological findings are; a compact layer of transitional epithelium lines the luminal surface of the uper urinary tract. Adjacent to the epithelial cells is "lamina propria "a loosely arranged layer that contained collagen, fibroblasts, blood vessels and unmyelinated axon bundles". The epithelial layer and lamina propria extended the full length of the upper urinary tract, both being relatively narrow in the renal pelvis compared to the ureter. In all regions of the upper urinary tract, the lamina propria is surrounded by a layer of smooth muscle cells of varying thickness and arrangement. In the pelvi-calyceal junction, fewer of the smooth muscle cells formed bundles, in the renal pelvis, the smooth muscle cells are more loosely arranged into bundles which are randomly oriented to each other and branch to connect with adjacent bundles forming a single plexiform muscle layer, but in the ureter formed tightly packed bundles to create a compact layer of muscle (Fig. 1). Small blood vessels and axon bundles were found between bundles of smooth muscle cells in all regions. Surrounding these layers is an outer adventitia made up of connective tissue and fibroblasts and containing blood vessels, nerve bundles and lymphatic vessels.

Figure (1): Photomicrograph showing the main components of the ureter which consists of an inner layer of transitional epithelium, a highly vascularized connective tissue a smooth muscle layer, and an outer layer of connective tissue (pt stain). Low magnification (*Junqueira & Carneiro*, 2003 a)

Atypical and typical smooth muscle cells (SMC) in the UUT:

Two types of smooth muscle cells within the muscle wall of the UUT have been identified under the light and electron microscopes: 'atypical' and 'typical' SMC (*Gosling & Dixon*, 1974).

'Typical' SMC are described as having long spindle shaped, contractile filament-filled cells surrounded by a continuous basal lamina and containing a large round or oval shaped nucleus and generally grouped into bundles. In the guinea pig and rat, typical SMC are defined as having more than 60% of their cell area filled with myofilaments. In the pig, 'typical' SMC are evident in the major calyx, renal pelvis and ureter. They represent 78–83% and more than 98% of the SMC in the proximal renal pelvis and uretero-pelvic junction (UPJ) respectively. *Lang & Klemm*, (2005) stated that gradual thickening of the wall of the UUT of all


mammals with distance from the pelvi-calyceal junction indicates the increasing presence of 'typical' SMC (Fig 2).

Pelvi-calyceal junction

Renal-pelvis

Ureter

Figure (2): General organization of the upper urinary tract. Low magnification electron micrographs of the rat pelvi-calceal junction, renal pelvis and ureter illustrating the gross arrangement of the smooth muscle cells within each area. Note increased number of SMCs in successive levels. (*Lang & Klemm*, 2005)

Atypical SMC were recognized by their distinctive irregular morphology, being irregularly shaped due to the presence of many long branching processes. They have been described as long thin cells, smaller than typical smooth muscle cells observed in the upper urinary tract, have a cytoplasm that stained less well with masson trichrome, and have smaller nuclei than typical smooth muscle cells. Furthermore they give negative staining for non- specific cholinesterase. The functional significance of this enzyme is unknown although this enzyme activity used to distinguish the two types of smooth muscle cell. The contractile myofilaments within atypical SMC are arranged in bundles which are separated by large areas of cytoplasm containing Golgi cisternae, granular endoplasmic reticulum and small mitochondria occupying 3% of cell sectional area. Atypical SMC which defined are as having less than 40% of their sectional area filled with myofilaments shows areas of close apposition with each other and with typical SMC (*Dixon & Gosling, 1982*).

These appositions are being separated by long portions of naked membrane. In uni-calyceal kidneys (mouse, dog, rat, guinea big and rabbit), 'atypical' SMC were first described as forming a discrete layer which begins at the pelvi-calyceal junction and continues over the length of the renal pelvis and terminate at UPJ. Such atypical smooth muscle cells were never observed in the distal regions of the renal pelvis or in the ureter (Gosling & Dixon, 1971). In multi-calyceal kidneys (human and big), 'atypical' SMC alone form the muscle coat of each minor calyx. A thin sheet of loosely arranged atypical SMC extends between the minor calyces creating an open network in this area, the space between cells being filled with collagen-rich connective tissue and axon bundles (Dixon & Gosling, 1982). The observed frequency of 'atypical smooth muscle cells' in the pelvi-calyceal junction is 80 % of cells, proximal (15%) and distal (0 %)