Cyclo-oxygenase-2(COX-2) expression in renal cell carcinoma: Histopathological and Immunohistochemical study

Thesis

Submitted for Fulfillment of Master Degree

In Pathology

Submitted By

Lamiaa Nashat Hassan Ahmed

(M.B.B.Ch.Faculty of medicine Bani-Suief University)

Under supervision of

Prof. DR. Nour El Hoda Ismael
Professor of Pathology
Faculty of Medicine-Cairo University

Prof. DR. Samia Ibrahim El Nagar
Assistant Professor of Pathology
Faculty of Medicine- Bani Suief University

DR. Samar Abdel – Monem El- Sheik
Lecturer of pathology
Faculty of Medicine- Cairo University

Faculty of medicine
Cairo University
2010

ABSTRACT

Renal cell carcinoma accounts for approximately 3% of adult malignancies and 90-95% of neoplasms arising from the kidney. Renal cell carcinoma has a male-to-female preponderance of 1.6:1 and it commonly occurs in the fourth to sixth decades of life, but the disease has been reported in younger people who belong to family clusters (**Sachdeva et el., 2008**).

Cyclooxygenase -2 catalyses the synthesis of prostaglandins from arachidonic acid. There is ample evidence to suggest an important role for COX-2 in cancer formation (**Hashimoto et al., 2003**).

Retrospective study including retrieval of formalin fixed paraffin embedded tissue sections from archival blocks of thirty cases of renal cell carcinoma were collected from the Department of Pathology-Cairo University and private laboratories in the period from May 2005 up to February 2007.

This thesis consisted of introduction, aim of work, review of literature, material and methods used, results illustrated by images, discussion of results, conclusions, recommendations and list of references, together with a summary in English and another in Arabic.

Immunohistochemical staining of COX-2 (Cyclooxygenase-2) was done using the streptavidin-biotin technique. This work reveals that COX-2 is positive in almost all cases of renal cell carcinoma (29/30) and negative in only one case. An association was found between COX-2 expression and some clinicopathological features, including tumor size, and tumor

grade while there were no relationship between COX-2 expression and age, sex of patient and histological type and stage of tumor.

Key words: COX-2, Renal cell carcinoma.

Acknowledgment

All thanks are due to ALLAH

I would like to express my sincere thanks and appreciation to **Prof. Dr. Nour El Hoda Ismael**, Professor of Pathology, faculty of medicine, Cairo University for her valuable suggestions, continuous encouragement and great effort in overcoming all obstacles that faced this work.

My profound gratitude and appreciation go to **Prof. Dr. Samia El Nagar**, assistant Professor of Pathology, faculty of medicine, Bani Suief University for her continuous guidance and patience.

I am deeply indebted and acknowledged to **Dr**. Samar Abdel – Monem El-Sheik, Lecture of pathology, faculty of medicine, Cairo University for her support and real assistance through this work.

I am most greatful to my seniors and colleagues at Bani Suief University for their co-operation through out this work.

At last but not least I would like to thank the members who were behind me in every successful step in my life, to my mother, my father and my husband.

CONTENTS

INTRODUCTION	1
INTRODUCTION AIM OF WORK	3
REVIEW OF LITERATUR	4
Epidemiology of Renal Cell Carcinoma	4
Etiology and Pathogenesis of Renal Cell Carcinoma	5
Clinical Features of Renal Cell Carcinoma	6
Diagnosis of Renal Cell Carcinoma	7
Associations and Syndromes of Renal Cell Carcinoma	8
Classification of renal cell carcinoma	9
Histologic Types of Renal Cell Carcinoma	10
Clear renal cell carcinoma	10
Papillary renal cell carcinoma	14
Chromophobe renal cell carcinoma	16
Collecting duct carcinoma of Bellini	18
Medullary carcinoma	20
Renal Cell Carcinoma, Unclassified	22
Xp11.2 Renal Cell Carcinoma	23

Mucinous, Tubular and Spindle Cell Carcinoma	25
*Grading of Renal Cell Carcinoma	26
*Staging of Renal Cell Carcinoma	28
*Cyclooxygenase-2	31
* Biochemistry Of COX-2	32
MATERIALS&METHODS	42
RESULTS	48
DISSCUSION	73
SUMMARY	81
CONCLUSIONS&RECOMMENDATIONS	83
REFERENCES	84

LIST OF TABLES

Table 1	Age frequency in renal cell carcinomas cases	48
Table 2	Sex frequency in studied cases	50
Table 3	Size frequency in studied case	51
Table 4	Frequancy of various histological variants of	52
	renal cell carcinoma	
Table 5	nuclear grading of studied cases	53
Table 6	Staging of studied renal cell carcinomas cases	54
Table 7	COX-2 expression in studied renal cell	55
	carcinoma cases	
Table 8	Degree of COX-2 staining in positively stained renal cell carcinoma cases	55
Table 9	Relation between degree of COX-2 staining and	57
	age of 29 positive cases	
Table 10	Relation between degree of COX-2 staining and	58
	sex of 29 positive cases	
Table 11	Relation between degree of COX-2 staining and	59
	size of tumor of 29 positive cases	
Table 12	Relation between degree of COX-2 staining and	60
	type of tumor of 29 positive cases	
Table 13	Relation between degree of COX-2 staining and	61
	grade tumor of 29 positive cases	
Table 14	Relation between degree of COX-2 staining and	62
	stage of tumor of 29 positive cases	

Table 15 Relation between degree of COX-2 staining and 63 capsular invasion and perirenal fat invasion of 29 positive cases

LIST OF GRAPHS

Graph (1)	Age frequency	49
Graph (2)	Sex frequency	50
Graph(3)	Size of studied renal cell carcinoma tumors	51
Graph(4)	Nuclear grade of studied renal cell carcinoma	53
	tumors	
Graph(5)	Capsular invasion and perirenal fat infiltration	54
Graph(6)	Degree of COX-2 staining	56
Graph(7)	Relation between degree of COX-2 positivity	58
	and sex of cases	
Graph(8)	Relation between degree of COX-2 positivity	59
	and size of tumors	
Graph(9)	Relation between degree of COX-2 positivity	61
	and tumor grade	
Graph(10)	Relation between degree of COX-2 positivity and capsular invasion and perirenal invasion	63

LIST OF FIGURES

Figure 1	Clear cell renal cell carcinoma(H&E x 400)	65
Figure 2	Papillary renal cell carcinoma (H&E x100)	66
Figure 3	Papillary renal cell carcinoma (H&E x200)	66
Figure 4	Chromophobe renal cell carcinoma(H&E x 400).	67
Figure 5	Collecting duct carcinoma of Bellini (H&E x200)	67
Figure 6	Collecting duct carcinoma of Bellini (H&E x400)	68
Figure 7	Clear cell renal cell carcinoma with sarcomatoid undifferentiated carcinoma (H&E x200)	68
Figure 8	Clear cell renal cell carcinoma, showing strongly positive COX-2 (x100)	69
Figure 9	Clear cell renal cell carcinoma, showing moderatly positive COX-2 (x200)	69
Figure 10	Clear cell renal cell carcinoma, showing negative COX-2 (x40)	70
Figure 11	Papilary renal cell carcinoma, showing moderatly positive COX-2 (x40)	70
Figure12	Chromophope renal cell carcinoma, showing strongly positive COX-2 (x200)	71
Figure 13	Chromophope renal cell carcinoma, showing weakly positive COX-2 (x200)	71
Figure 14	Collecting duct carcinoma of Bellini, showing moderately positive COX-2 (x200)	72
Figure 15	Clear cell renal cell carcinoma with sarcomatoid undifferentiated carcinoma showing weakly positive $COX-2\ (x100)$	72

INTRODUCTION

Renal cell carcinoma is the most frequently occurring solid lesion within the kidney and comprises different RCC types with specific histopathological and genetic characteristics. There is a 1.5:1predominance of men over women, with peak incidence occurring between 60 and 70 years of age (**Ljungberg et al., 2007**).

Risk factors for renal-cell carcinoma include smoking, obesity, and hypertension, as well as acquired cystic kidney disease associated with end-stage renal disease. The classic presentation of renal-cell carcinoma includes the triad of flank pain, hematuria, and a palpable abdominal mass. Few patients present in this manner. Other common presenting features may be nonspecific, such as fatigue, weight loss, or anemia (Chow et al., 2000).

Many renal masses remain asymptomatic and non-palpable until late in the natural course of the disease. More than 50% of RCCs are detected incidentally using non-invasive imaging for the evaluation of a variety of non-specific symptom complexes (**Novick et al., 2002**).

The tissue of origin for renal cell carcinoma is the proximal renal tubular epithelium. Renal cancer occurs in both a sporadic (nonhereditary) and a hereditary form, and both forms are associated with structural alterations of the short arm of chromosome 3 (3p) (Sachdeva et al., 2008).

A quarter of the patients present with advanced disease, including locally invasive or metastatic renal-cell carcinoma. Moreover, a third of the patients who undergo resection of localized disease will have a recurrence. Median survival for patients with metastatic disease is about 13 months.

Thus, there is a great need for more effective surgical and medical therapies (Herbert et al., 2005).

Cyclooxygenase 2(COX-2) is an inflammation-associated enzyme involved in the pathogenesis of many solid tumors (Ladetto et al., 2005).

Elevated tumor (COX-2) expression is associated with increased angiogenesis, tumor invasion and promotion of tumor cell resistance to apoptosis (Krysan et al., 2003).

COX-2 is a key enzyme in the production of prostaglandins and thromboxanes from free arachidonic acid. Increasing evidence suggests that COX-2 plays a role in tumorigenesis. COX-2 is over-expressed in many tumors, including non-small cell lung cancer (NSCLC) ,adenocarcinoma of colon and renal cell carcinoma (**Liu et al., 2007**).

In human RCC tissues the levels of COX-2 expression were correlated with tumour grade and pathological stage. Expression of COX-2 was higher in the granular cell subtype than in the clear cell subtype of RCC. Immunoelectron microscopy revealed that COX-2 was expressed in the nuclear membrane, rough endoplasmic reticulum, Golgi complex and mitochondrial membrane of RCC cells. COX-2 overexpression within these intracellular organelles in RCC may be associated with renal cell carcinogenesis and COX-2 may be a useful biomarker in RCC (Hashimoto et al., 2003).

AIM OF THE WORK

To assess COX-2 expression in renal cell carcinoma and its relation to various clinicopathological features.

RENAL CELL CARCINOMA

Epidemiology of renal cell carcinoma

Clinically, the most common renal neoplasm is renal cell carcinoma. For nearly a century some thought that it was derived from adrenal rests, and the name hypernephroma still persists. Another frequently seen synonym is renal adenocarcinoma (**Herbert et al., 2005**).

Renal cell carcinoma was regarded as a single entity with a wide variety of gross and histologic appearances and a highly variable clinical course. Renal cell carcinoma is recognized as a family of cancers derived from the epithelium of the renal tubules, but has distinct morphological features resulting from different genetic abnormalities (**Ljungberg et al., 2007**).

In renal cell carcinoma the male-to-female ratios range between 1.5:1 and 2:1, and the average age at diagnosis is 60-64 years. However, 7% of sporadic renal cell carcinoma is diagnosed in patients younger than 40 years, and rare cases have been reported in patients aged 14-18 years (**Cohen et al.**, 2009).

Some reports have been made of familial clustering of renal cell carcinoma outside recognized hereditary syndromes such as von Hippel-Lindau disease, but it is not clear whether these represent hereditary renal cell carcinoma, shared exposure to carcinogens, or coincidence (**Levinson et al.**, 1990).

Etiology and Pathogenesis

A number of environmental and genetic factors have been studied as possible causes for renal cell carcinoma.

- Smoking is a major risk factor, accounting for as much as 30% of renal cell carcinoma (La Vecchia et al., 1990).
- Obesity, especially in women, is also important and up to 25% of the cases are attributed to this risk factor (Maclure & Willell, 1990).
- Long-term phenacetin and acetaminophen use and exposure to cadmium and petroleum products (McLaughlin et al., 1985).
- Industrial chemicals are also risk factors. The excess risk from exposure to gasoline is highest after a latent period of about 30 years (Partanen et al., 1991).
- Kidney stones are also risk factor (Maclure and Willett., 1990).
- Hypertension may be associated with increased incidence of renal cell carcinoma (Lipworth et al., 2006).
- There is an increased incidence of acquired cystic disease of the kidney in patients undergoing long-term renal dialysis; this predisposes to renal cell cancer (Ramon et al.,2004).
- Von Hippel-Lindau disease (VHL) is an inherited disease associated with renal cell carcinoma (Sachdeva et el., 2008).

Further reduction in cigarette smoking, and a decrease in the rates of obesity and hypertension would likely moderate the increasing incidence of renal cell cancer (**Lipworth et al., 2006**).

Clinical Features

Many renal masses remain asymptomatic and non-palpable until late in the natural course of the disease. More than 50% of RCCs are detected incidentally using non-invasive imaging for the evaluation of a variety of non-specific symptom complexes (**Ljungberg et al., 2007**).

Most common presentations are hematuria (40%), flank pain (40%) and palpable mass in the flank or abdomen (25%). Other signs and symptoms are weight loss (33%), fever (20%), hypertension (20%), hypercalcemia (5%), night sweats and malaise (**Sachdeva et el., 2008**).

Paraneoplastic syndromes are found in around 30% of patients with symptomatic RCC. The most common of these are: hypertension, cachexia, weight loss, pyrexia, neuromyopathy, amyloidosis, elevated erythrocyte sedimentation rate, anaemia, abnormal liver function, hypercalcaemia and polycythaemia (Cohen et al., 2009).

Diagnosis

Plain radiographic findings are nonspecific, and images may demonstrate a large, soft-tissue mass in the renal area with displacement of the fat planes. Renal tumors are most accurately and consistently detected with some type of radiographic procedure. Calcification occurs in 1 to 15 percent of lesions and is usually localized to non-peripheral portions of the mass.