Coronary Calcium Scoring by Multislice Computed Tomography. Correlation with Myocardial Perfusion Imaging in Type 2 Diabetic Patients with Suspected Coronary Artery Disease.

Thesis
Submitted in Partial Fulfillment of
MD Degree in Critical Care Medicine

Wael Sami Gamal

MBBCh., MSc (Critical Care Medicine)

Prof. Dr. Alia Abd El-Fattah, MD

Professor of Critical Care Medicine, Critical Care Medicine Dept., Cairo University

Prof. Dr. Hisham Al-Aassar, MD

Professor of Critical Care Medicine, Critical Care Medicine Dept., Cairo University

Prof. Dr. Ashraf selim, MD

Professor of radiology, Radiodiagnosis Dept., Cairo University

Prof. Dr. Ahmed Abd Al-Aziz, MD

Assist. Professor of Critical Care Medicine, Critical Care Medicine Dept., Cairo University

Faculty of Medicine Cairo University 2010

Acknowledgement

Praise be to Allah, the creator and sustainer of the world, who has said in his holy Quran" We raise to degrees (of wisdom) whom we please, but overall endued with knowledge is one, the all-knowing" (Yusuf 76).

I would like to express my deepest gratitude to **Prof. Dr. Sherif Mokhtar**, professor of cardiology, the godfather of Critical Care Medicine Department, Cairo University for his guidance, encouragement, and unlimited support.

My deepest appreciation to **Prof. Dr. Alia Abd-El Fattah**, professor of critical care medicine, Cairo University for her support and advice throughout supervising those work and whose maternal attitude and moral support can not be praised enough.

I m extremely grateful to Prof. **Dr.** Ashraf Selim, professor of radiology, radio-diagnosis department, Cairo University for his enormous help to accomplish this work.

I'm grateful to Prof. **Dr. Hisham Al Aassar**, professor of critical care medicine department, Cairo University for his enormous help, guidance, valuable directions, and continuous support.

I feel much obliged to **Dr. Ahmed Abd Al Aziz** assistant professor of critical care medicine department, Cairo University for his advice and dedicating so much of his precious time and effort.

Special thanks to nuclear, chemical labs personel and Cairo scan CT team

Wael Samy

Abstract

Coronary artery calcium (CAC) provides evidence of coronary atherosclerosis. The relationship between CAC detected by multidetector computed tomography (MDCT) and inducible ischemia detected by myocardial perfusion imaging (MPI) in 23 diabetic patients with suspected coronary artery disease were studied. A moderately positive correlation has been foud. Ischemic MPI was associated with atherosclerosis by CAC, but is rarely seen for CAC score 0. CAC score of 0 appears to obviate the need for subsequent noninvasive testing. Normal MPI patients, frequently have low CAC. CAC scoring and stress MPI should be thus considered complementary approaches.

Key Words: Myocardial perfusion imaging - multidetector computed tomography-diabetes mellitus-coronary calcium.

List of Tables

Table (1)	Interpretation and Recommendations for CT Heart Scanning	
	and CACP Scoring	
Table (2)	Effective doses for natural and common diagnostic	
	procedures	
Table (3)	Semiquantitative scoring system: 5-point model	
Table (4)	Gender and mean age distribution of patients	
Table (5)	Risk factors for CAD	
Table (6)	Types of symptoms	
Table (7)	Patients with and without resting ECG changes.	
Table (8)	Classification of patient according to ECG response to	
	stress.	
Table (9)	Classification of patients according to Framingham risk	
	score	
Table (10)	Patients with normal and abnormal CV autonomic reflexes	
Table (11)	Classification of patients according to fundus examination	
Table (12)	Patients with and without proteinuria.	
Table (13)	Patients with positive and negative MPI	
Table (14)	Subgroups of patients according to MPI Severity	
Table (15)	EF in patients with abnormal and normal MPI.	
Table (16)	CAC in males and females	
Table (17)	CAC in patients above and below 60 years	
Table (18)	CAC in males and females above and below 60 years	
Table (19)	Coronary lesions ≥60%(significant) and ≤60% by CTA	
Table (20)	Coronary lesions ≥60%(significant) and <60% by C.A	

Table (21)	Relation of symptoms to stress ECG and different coronary		
1 abic (21)	Relation of symptoms to stress ECG and different coronary		
	imaging modalities.		
Table (22)	CAC score in pts with and without abnormal ECG changes		
Table (23)	Relation between resting ECG and MPI		
Table (24)	Relation between resting and stress ECG		
Table (25)	Relation between resting ECG and obstructive coronary		
	lesions on CTA and C.A.		
Table (26)	Relation between stress ECG and different coronary imaging		
	modalities		
Table (27)	CAC in patients with low, moderate, and high Framingham		
	risk score		
Table (28)	CAC score of 0 and > 0 and Framingham risk score		
Table (29)	SSS in patients with low, moderate, and high Framingham		
	risk score		
Table (30)	Obstructive CTA and C.A. lesions in patients with low,		
	moderate to high Framingham risk score		
Table (31)	CAC in patients with positive and negative MPI		
Table (32)	Severity of ischemia (SSS) versus CAC score		
Table (33)	Agreement between MPI and CTA		
Table (34)	Agreement between +ve MPI and CTA ≥60% on territorial		
Table (35)	Agreement between MPI and C.A		
Table (36)	Agreement between +ve MPI and C.A ≥60% on territorial		
	level (for 23 patients)		
Table (37)	CAC 0 versus CAC > 0 and MPI		
Table (38)	CAC 0 versus CAC > 0 and SSS		
Table (39)	CAC ≤ 100 versus CAC > 100 and MPI		
Table (40)	CAC ≤100 versus CAC > 100 and SSS		

Table (41)	Normal and abnormal MPI in different CAC groups			
Table (42)	SSS in different CAC groups			
Table (43)	CAC = 0 versus $CAC > 0$ and CTA			
Table (44)	CAC ≤ 100 versus CAC > 100 and CTA			
Table (45)	CAC = 0 versus $CAC > 0$ and $C.A$			
Table (46)	CAC ≤ 100 versus CAC > 100 and C.A			
Table (47)	Agreement between CTA and C.A			
Table (48)	Agreement between +ve MPI , CTA ≥60% and C.A ≥60%			
	(for 21 patients).			
Table (49)	Sensitivity and specificity of MPI and CTA for detection of			
	obstructive coronary lesions compared to C.A. as a gold			
	standard.			
Table (50)	Our study and other studies at CAC =0 and greater than 0			
Table (51)	Our study and other studies at CAC lower and greater than			
	100			
Table (52)	Our study and other studies at CAC lower and greater than			
	400			
Table (53)	CAC and presence of obstructive CAD, comparison between			
	our study and prior studies			
Table (54)	CTA and detection of functionally significant lesions			
	compared to MPI			
Table (55)	Our CTA results compared to others for detection of CAD.			

List of Figures

Figure (1)	Fixed and adaptive- array detectors.	
Figure (2)	Isotropic voxel	
Figure (3,3")	SPECT myocardial perfusion imaging: 20-segment models	
Figure (4)	SPECT myocardial perfusion imaging: 17 -segment models	
Figure (5)	SPECT myocardial perfusion imaging: coronary artery territories in 17 and 20	
	segment models.	
Figure (6)	Schematic representation of ECG-gated SPECT acquisition and processing	
Figure (7)	Gender of patients	
Figure (8)	Number of patients with positive and negative MPI	
Figure (9)	Gender and mean CAC	
Figure (10)	Mean CAC in patients above and below 60 years	
Figure (11)	No. of patients and lesions in different CTA results	
Figure (12)	No. of patients and lesions in different CA results	
Figure (13)	Symptoms and mean CAC	
Figure (14)	Symptoms and different coronary imaging modalities	
Figure (15)	Relation between stress ECG and different coronary imaging modalities	
Figure (16)	Relation between stress ECG and CAC	
Figure (17)	Relation between Framingham risk category and CAC	
Figure (18)	CAC score of 0 and > 0 and Framingham risk score	
Figure (19)	Relation between SSS and Framingham risk score	
Figure (20)	CAC in patients with positive and negative MPI.	
Figure (21)	Correlation between SSS and CAC score	
Figure (22)	Agreement between MPI and CTA	
Figure (23)	Agreement between +ve MPI and CTA ≥60% on territorial level	
Figure (24)	Agreement between MPI and C.A	
Figure (25)	Agreement between +ve MPI and C.A≥60% on territorial level	
Figure (26)	MPI results in patients with CAC=0 and CAC > 0	
Figure (27)	SSS in patients with CAC =0 and CAC > 0	
Figure (28)	MDCT for patient No. 7 with CAC=0	
Figure (29)	Normal myocardial perfusion display of pt No.7	

Figure (30)	Volume rendering reconstruction of pt No 7showing normal coronaries		
Figure (31)	Normal RCA of pt No.7 by MDCT (curved MPR) and conventional coronary angiography (C.A)		
Figure (32)	Normal LAD of pt No.7 by MDCT(curved MPR) and conventional C.A.		
Figure (33)	Myocardial perfusion display of pt No.2 showing mild ischemia at anterior wall		
Figure (34)	3 D display of pt No.2 showing mild ischemia at anterior wall		
Figure (35)	MDCT of pt No.2 with CAC score = 0		
Figure (36)	MDCT shows insignificant lesion in D2and C.A shows significant lesion of pt No.2		
Figure (37)	MPI results in patients with CAC≤100and CAC >100		
Figure (38)	SSS in patients with CAC ≤100 and CAC >10		
Figure (39)	myocardial perfusion display of pt No.18 showing total reversibility at LAD and LCX±RCA territory		
Figure (40)	Polar map of pt No.18 showing total reversibility at LAD and LCX±RCA territory		
Figure (41)	MDCT showing heavy coronary calcification CAC=2280 HU in pt No.18		
Figure (42)	C.A showed diffusely diseased LAD and RCA of the same patient (No 18)		
Figure (43)	Myocardial perfusion display of pt No.12 showing moderate ischemia at the anterior wall.		
Figure (44)	Polar map with the SSS of pt No. 12 showing moderate ischemia at the anterior wall.		
Figure (45)	MDCT of pt No.12showing calcified plaques in mid LAD and proximal LCX with CAC= 73 HU		
Figure (46)	contrast enhanced MDCT of pt No.12 showing total LAD occlusion		
Figure (47)	C.A of pt No.12 showing total LAD occlusion		
Figure (48)	CTA in patients with CAC = 0 and CAC > 0		
Figure (49)	CTA in patients with CAC ≤100 and CAC >100		
Figure (50)	C.A in patients with $CAC = 0$ and $CAC > 0$		
Figure (51)	C.A in patients with CAC ≤100 and CAC >100		
Figure (52)	Agreement between CTA and C.A		
Figure (53)	Agreement between +ve MPI , CTA ≥60% and C.A		
Figure (54)	Sensitivity, specificity, PPV, NPV, and accuracy of MPI and CTA		

List of Abbreviation

ACC : American College of Cardiology

ACE : Angiotensin Converting Enzyme

Apo E(A) : Apolipoprotein E(A)

ASNC : American Society of Nuclear Cardiology

BMP : Bone Morphogenetic Protein

CAC : Coronary Artery Calcium (calcification)

CACP : Coronary Artery Calcified Plaque

CAD : Coronary Artery Disease

Cbfa1 : Core-binding factor α-1

CCR2 : CC Chemokine Receptor 2

CT(A) : Computed Tomography (angiography)

CVCs : Calcifying Vascular Cells

D (2,3,4) : Dimension (2,3,4)

DIAD : Detection of silent myocardial Ischemia in

Asymptomatic Diabetic subjects

DM : Diabetes Mellitus

EBCT: Electron Beam Computed Tomography

ECs : Endothelial Cells

ECG : Electrocardiogram

ED : Emergency Department

EDV : End Diastolic Volume

EETs : Epoxyeicosatrienoic acid

EF : Ejection Fraction

eNOS : Endothelial Nitric Oxide Synthase

ENPP-1 : Ecto-Nucleotid Pyrophosphatase/Phosphodiesterase-

1

ER-α : Estrogen Receptor-α

ESV : End Systolic Volume

FH : Family History

FRS: Framingham Risk Score

Gla : Glutamic Acid

HDL : High Density Lipoprotein

HMG-Co A: Hydroxymethylglutaryl Coenzyme A

HTN : Hypertension

HU: Hounsfield Unit

IL : Interleukin

L/T : Lesion/ Territory

LAD : Left Anterior Descending

LCX : Left Circumflex Artery

LDL : low Density Lipoprotein

LVEF : Left Ventricular Ejection Fraction

LM : Left Main coronary artery

LV : Left Ventricle

mA : Milli-Ampere

MAR : Myocardium At Risk

M-CSF : Macrophage-Colony Stimulating Factor

MDCT : Multi-Detector Computed Tomography

MGP : Marrix Gla Protein

MIP : Maximum Intensity Projection

MMP : Matrix Metalloproteinases

MPCs : Mononuclear Phagocytic Cells

MPR : Multiplanar Reconstruction

MRI : Magnetic Resonance Imaging

mSv : Milli Sievert

MUGA: Multiple Gated Acquisition nuclear ventriculography

NCP : Non Calcified Plaque

NO : Nitric Oxide

No. : Number

OLCs : Osteoclast-Like Cells

OPG : Osteoprotegerin

OPN : Osteopontin

PTH : Parathyroid Hormon

Pts : Patients

RANK(L): Receptor Activator of Nuclear factor Kappa (Ligand)

RCA: Right Coronary Artery

RV : Right Ventricle

SMCs : Smooth Muscle Cells

SPECT: Single Photone Emission Computed Tomography

SSS : Summed Stress Score

SV : Stroke Volume

Tc-99m : Technetium-99m

Tl-201 : Thalium-201

TNF: Tumor Necrosis Factor

SCONTENT

Item	Daga
I tem	Page
Introduction	1-4
Aim of Work	5
Review:	6-84
Chapter I: Calcification and coronary atherosclerosis. Chapter II: Multidetector computed tomography	6-29 30-59
and coronary artery disease. Chapter III: Gated single photon emission	60-84
computed tomography and diabetes mellitus. Patients & Methods	85-101
Results	102-149
Discussion	150-168
Summary	169-172
Conclusion	173-174
References	175-218
Arabic Summary	٣-١

Introduction

iabetes is a major cause of mortality and morbidity worldwide, and its prevalence is increasing at alarming proportions. A close relationship between type 2 diabetes and the development of coronary artery disease (CAD) exists, (1) and cardiovascular disease is the main cause of death in this patient population. (2) Coronary artery disease (CAD) accounts for 70% of the deaths among diabetic patients. (3) Patients with diabetes have a 2-to-4-fold higher risk of cardiac events than their nondiabetic counterparts. In fact, the risk of myocardial infarction in diabetic patients without previous CAD is comparable to the risk of reinfarction in nondiabetics subjects with previous CAD. (1)

Noninvasive testing, including myocardial perfusion scintigraphy has been used to detect CAD in diabetic patients, ⁽⁴⁾ and a clear association between abnormal test results and worse outcome has been demonstrated, similar to that in the general population. ⁽⁵⁾ Nonetheless, after normal findings, elevated event rates are still observed in diabetic patients compared with nondiabetic individuals, ⁽⁵⁾ indicating a need for further refinement of prognostication in this population. The higher event rates in patients with diabetes compared with those in patients without diabetes could be related to differences in coronary plaque burden and composition. Therefore, direct visualization of coronary plaque burden could be a useful

tool for risk stratification. Indeed, using invasive techniques, a considerably higher extent of CAD and plaque burden have been demonstrated in the presence of diabetes. (6)

Arterial calcium development is intimately associated with vascular injury and atherosclerotic plaque. Coronary artery calcified plaque (CACP) is an active process and can be seen at all stages of atherosclerotic plaque development. (7)

Symptomatic patients with a high pre angiographic likelihood for significant CAD are expected to have substantially higher coronary calcium quantities. The calcium score parallels the increasing prevalence of clinical coronary artery disease increasing with age and it may be used to estimate the degree of angiographic lumen narrowing irrespective of age and gender. However, the role of calcium quantification for risk assessment especially in an elderly high-risk population remains controversial.

To date, atherosclerosis has been noninvasively assessed by EBCT and non contrast MDCT in patients with type 2 diabetes using coronary calcium scoring, which reveals extensive atherosclerosis. (11) Still, coronary calcium scoring may seriously underestimate coronary plaque burden as noncalcified lesions are not recognized. (12) More recently, contrast-enhanced multislice computed tomography (MSCT) coronary angiography has become available, which allows, in contrast to calcium scoring, detection of both calcified and noncalcified coronary lesions. (13)

As a result, the technique potentially allows a more precise noninvasive evaluation of coronary atherosclerosis, which in turn could be valuable for improving risk stratification.

Retrospectively electrocardiographically (ECG) gated multislice or multidetector computed tomographic (MDCT) coronary angiography is a robust noninvasive imaging modality with high spatial and temporal resolution that enables accurate diagnosis or exclusion of coronary artery disease (CAD). It is the noninvasive imaging examination of choice for patients who have angina pectoris with inconclusive stress test results and low to intermediate risk of CAD. (14,15)

Although myocardial perfusion imaging has been available in routine clinical settings since the 1970s, the development of gated single-photon emission tomography (gated SPECT) over the past two decades has made possible a combined assessment of myocardial perfusion and left ventricular function. This additional information on ventricular function has proven to be useful for both the diagnosis and prognosis of CAD. (16)

Patients with diabetes are at risk of cardiovascular mortality and are more likely to have silent ischemia and less likely to survive a myocardial infarction than non diabetic individuals. This risk is 7-fold greater in diabetic patients with myocardial perfusion defects than in diabetic patients for whom scintigraphic data are normal. (17)