

ICHNOLOGY AND PALEOENVIRONMENTAL RECONSTRUCTION OF THE LOWER CAMBRIAN ROCKS, UM BOGMA AREA, SINAI, EGYPT

A thesis Submitted to

Geology Department Faculty of Science-Cairo University

By

Walid Gamal Kassab

B.Sc., Very Good

In Partial Fulfillment for the Requirements of Master Degree of Science in Geology

2010

Approval Sheet Submission

ICHNOLOGY AND PALEOENVIRONMENTAL RECONSTRUCTION OF THE LOWER CAMBRIAN ROCKS, UM BOGMA AREA, SINAI, EGYPT

A thesis Submitted to Geology Department Faculty of Science-Cairo University

By

Walid Gamal Kassab

B.Sc., Very Good

Supervising Committee:

Dr. Mohamad Fouad Aly

Prof. of Paleontology and Stratigraphy, Geology Department, Faculty of Science, Cairo University.

Dr. Ali Abdel Motelib Ali Khalil

Ass. Prof. of Minerals and Rocks, Geology Department, Faculty of Science, Cairo University.

Dr. Mohamed Saleh Hassan Hammed

Lecturer of Structure Geology, Geology Department, Faculty of Science, Cairo University.

Head of Geology Department

Prof. Adel Abdel Aziz Sehim

To My Parent

NOTE

Besides the work carried out in this thesis, the candidate Walid Gamal Kassab, has pursued post graduate studies for the partial fulfillment of M.Sc. Degree in the following topics:-

- 1. Lithostratigraphy
- 2. Biostratigraphy
- 3. Macropaleontology
- 4. Micropaleontology
- 5. Paleoecology
- 6. Sedimentary Rocks
- 7. Sedimentation
- 8. Structure Geology
- 9. Photogeology & Remote Sensing
- 10. Statistics
- 11. German Language

He has passed successfully an examination in the above mentioned topics; in October 2003.

Prof. Adel Abdel Aziz Sehim

Head of Geology Department, Faculty of Science, Cairo University

ACKNOWLEDGEMENT

First and above all, I would like to express my great thanks to my God, for helping me to accomplish this work.

My profound acknowledgement and thanks would like to thank my colleagues of the department for their help and support during hard times.

I am really grateful to my committee members; I wish to express my sincere gratitude and appreciation to my supervisors Prof. Mohamad Fouad Aly, Dr. Ali Abdel Motelib and Dr. Mohamad Saleh for their supervision, field guidance and encouragement. They supervised this study and helped to direct the research toward success by numerous discussions and informative reviews of reports and manuscripts. They also gave me plenty of freedom to make and guide my own ideas.

This work would not have been possible without the most patient help and support during the constructive discussion during the preparation of the thesis.

Deep Thanks to Prof. Alfred Uchman: Institute of Geological Sciences, Jagiellonian University in Kraków, Poland. He gave a plenty of time to review the systematic ichnology work.

Special thanks are also to all colleagues of the Geology Department, particularly to Prof. Nabil Aboul Ela, Prof. Ahmad El Kammar, Prof. Ahmed Abou Khadra, Prof. Mohamad Gamil, Dr. Adly Helba, Dr. Abdel Moneim El-Araby and Dr. Niazy El Barkooky for advice, valuable assistance, and suggestions. They are open minded and helpful in discussing and borrow special articles. Mr. Amir Mohamad Hassan for his assistance in learning graphics, Mr. Tamer Nassar and Mr. Moataz Mohamad Adel for helping in field work and Mr. Selim Saber Selim for helping in microfacies identification and Mr. Mohamad Mabrouk for help me in scan work for trace fossils.

Personal appreciations to Prof. Dr. Mohamad El Anbawy who for their help and preparation of XRD Analysis.

This thesis would never have been completed without the help and support of my mother and my sister Wafaa. They were an important source for the successful accomplishment of the study.

KEY WORDS:

Ichnology, Paleoenvironmental Reconstruction, Cambrian Rocks, Sarabit El Khadim and Abu Hamata formations, Um Bogma Area, Sinai, Egypt.

ABSTRACT

Facies and ichnofabric of the Lower Cambrian siliciclastic rocks of Um Bogma region are correlated and compared to evaluate changes in palaeoceanographic conditions controlled by palaeogeography in the distal zone of the southern Tethys. The investigated slope forming Lower Cambrian sections are subdivided into two distinctive stratigraphic sequences. The lower is represented by basal conglomeratic successions separated by red ferruginous oxipaleosols of generally humid to tropical environment and an ichnofossils dominating upper fining- and thinning upward successions of sandstone-shale intercalations. Four stratigraphic sections are measured and traced laterally at Um Bogma, G. Sarabit El Khadim, G. Lehian and Wadi Baba. The investigated slope forming Lower Cambrian sections comprise a fining- and thinning upward succession measured at Gabal Um Bogma, Gabal Sarabit El Khadim, Gabal Lehian and Wadi Baba. A diverse trace fossil association is described from siliciclastic rocks on a finer scale to map local environmental patterns, or biotic responses to episodic events (storms, flood). It includes nein ichnogenus with seven identified ichnospecies assigned to the Cruziana and Skolithos ichnofacies, including Arenicolites isp., Bergaueria sucta, Bergaueria prantli, Cruziana salomonis, Dimorphichnus cf. obliquus, Dimorphichnus cf. quadrifidus, Diplichnites isp., Gordia marina, Planolites vulgaris, Rusophycus isp and Skolithos isp. This faunal association allows an age determination for these siliciclastic sediments as Early Cambrian. The trace fossils were likely produced by trilobites, suspension feeding annelids and deposit feeding "worms", probably polychaetes. Sections bearing abundant Skolithos represent the Skolithos ichnofacies, which is typical of high energy environments with loose sandy, well sorted to slightly muddy substrates in intertidal to shallow subtidal zones. The other trace fossils represent the Cruziana ichnofacies, which is typical of subtidal, poorly sorted and soft substrates, from moderate energy to low energy environments between the fair weather and storm wave base. The Lower Cambrian siliciclastic sediment was deposited at an early stage in a fluvial condition. Then subsidence in a later stage affected by normal faults along which shallow marine clastic sedimentation took place in the final stage of the shelf development.

(Submitted to the 10th Annual meeting of the Geological Society of Egypt)

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	1
1.1. PREAMPLE	1
1.2. LOCATION OF THE STUDY AREA.	1
1.3. PHYSIOGRAPHY	2
1.4. AIM OF THE STUDY	3
1.5. METHODOLOGY	3
1.6. PREVIOUS WORK AND SYNOPSIS ON THE PALEOZOIC STRATIGRAPHY OF EGYPT	4
CHAPTER 2: GEOLOGIC SET UP AND STRATIGRAPHY	12
2.1. GEOLOGIC SET UP	12
2.1.1. The Precambrian basement rocks	12
2.1.2. The Paleozoic sedimentary rocks	12
2.1.2A. Cambrian sediments	12
1. Sarabite El Khadim Formation (Lower Cambrian)	14
2. Hamata Formation (Lower Cambrian)	14
3. Adedia Formation (Upper Cambrian)	15
2.1.2B. The Lower Carboniferous rocks	15
1-Um Bogma carbonate Formation	15
2-Abu Thora clastic Formation	16
2.1.3. Permo-Triassic Rocks	17
2.2. STRATIGRAPHY OF LOWER CAMBRIAN	17
1. SARABIT EI KHADIM	19
1. Description	19
2. Stratigraphic boundaries	25
3. Areal distribution	25
4 Fossil content	25

5. Lithofacies of Sarabit El Khadim Formation.	25
a. Planar cross-bedded conglomerate-sandstone facies (PCS)	31
b. Trough cross-bedded sandstone facies (TCS)	32
c. Horizontally-bedded sandstone facies (HBS)	32
d. Laminated reddish brown mudstone facies (HLM)	33
2. ABU HAMATA FORMATION	33
1. Description	33
2. Stratigraphic boundaries	34
3. Areal distribution	34
4. Fossil Content	40
5. Lithofacies of Abu Hamata Formation	40
a. Sandstone dominated facies (SDF)	40
i. Skolithos bearing sandstone subfacies (SBS)	40
ii. Rippled and small-scale cross-bedded sandstone subfacies (RCS)	41
b. Siltstone dominated facies (SLDF)	44
i. Cruziana bearing facies subfacies (CBF)	44
ii. Laminated and rippled siltstone subfacies (LRS)	45
c. Claystone facies (CSF)	45
d. Limestone facies (LSF)	45
CHAPTER 3: PETROGRAPHY AND MICROFACIES ASSOCIATIONS	46
c. Horizontally-bedded sandstone facies (HBS) d. Laminated reddish brown mudstone facies (HLM) 2. ABU HAMATA FORMATION 1. Description 2. Stratigraphic boundaries 3. Areal distribution 4. Fossil Content 5. Lithofacies of Abu Hamata Formation a. Sandstone dominated facies (SDF) i. Skolithos bearing sandstone subfacies (SBS) ii. Rippled and small-scale cross-bedded sandstone subfacies (RCS) b. Siltstone dominated facies (SLDF) i. Cruziana bearing facies subfacies (CBF) ii. Laminated and rippled siltstone subfacies (LRS) c. Claystone facies (CSF) d. Limestone facies (LSF)	46
3.2. MICROFACIES TYPES	47
1. Conglomerates Microfacies Associations	47
2. Sandstone Microfacies Associations	49
3. Mudstones Microfacies Associations	56
4. Limestone Microfacies Associations	57

CHAPTER 4: ICHNOFACIES IDENTIFICATION AND SYSTEMATICS	70
4.1. INTRODUCTION	70
1. Definition and development	70
2. Types of trace fossils	73
3. Trace Fossil Classification	73
4. Advantages of Trace Fossils	76
5. Types of Ichnofacies	77
4.2. SYSTEMATIC PALEONTOLOGY OF TRACE FOSSILS	82
1. METHODOLOGY	82
2. CRUZIANA ICHNOFACIES	83
3. SKOLITHOS ICHNOFACIES	114
CHAPTER 5: SEDIMENTARY FACIES AND ENVIRONMENTS	118
5.1. Introduction	118
5.2. SEDIMENTARY FACIES AND ENVIRONMENTS	118
A) Sarabit El Khadim Formation	118
a) Planar cross-bedded conglomerate and sandstone facies (PCS).	118
b) Trough cross-bedded sandstone facies (TCS).	120
c) Horizontally-bedded sandstone facies (HBS).	121
d) I aminated reddish brown mudstone facies (HLM)	121

B) ABU HAMATA FORMATION	122
1. Sandstone dominated facies (SDF).	122
i. Skolithos bearing sandstone (SBS).	122
ii. Rippled and small-scale cross-bedded sandstone (RCS).	128
2. Siltstone dominated facies (SLDF).	129
i. Cruziana bearing facies (CBF)	129
ii. Laminated and rippled siltstone (LRS).	131
3. Claystone facies (CSF).	131
4. Limestone facies (LSF).	132
CHAPTER 6: SUMMARY AND CONCLUSIONS	134
References	144

LIST OF FIGURES		PAGE
Figure (1.1)	Location of the study area.	2
Figure (1.2)	Landsat image of Um Bogma area .show the main topographic units	5
Figure (2.1)	Geologic Map of Um Bogma Area	13
Figure (2.2)	Stratigraphic section of the lower Cambrian clastic units at Gabal Um Bogma	21
Figure (2.3)	Stratigraphic section of the lower Cambrian clastic units at Gabal Lehian	22
Figure (2.4)	Stratigraphic section of the lower Cambrian clastic units at Gabal Sarabit El Khadim	23
Figure (2.5)	Stratigraphic section of the lower Cambrian clastic units at Wadi Baba	24
Figure (2.6)	Stratigraphic cross-section illustrating the basin geometry during deposition of Sarabit El Khadim Formation	30
Figure (2.7)	Stratigraphic cross-section illustrating the basin geometry during deposition of Abu Hamata	39
Figure (4.1)	Different categories of ethological classification (after Seilacher, 1967b)	74
Figure (4.2)	Comparison of the stratinomic trace fossil terminology between the systems proposed by Seilacher and Martinsson	75
Figure (4.3)	Distribution of common marine ichnofacies	77
Figure (4.4)	The typical position of the major ichnofacies in marine and continental environments	77
Figure (4.5)	Sketches showing the different ichnofacies	81
Figure (5.1)	Depositional environments of stratigraphic section at Gabal Um Bogma	124

Figure (5.2)	Depositional environments of stratigraphic section of at Gabal Lehian	125
Figure (5.3)	Depositional environments of stratigraphic section of at Gabal Sarabit El Khadim	126
Figure (5.4)	Depositional environments of stratigraphic section of at Wadi Baba	127
Figure (5.5)	Schematic model of sedimentary facies distribution and corresponding depositional environments of a) Sarabit El Khadim Formation & b) Abu Hamata Formation	133
Figure (6.1)	The relationship between the basin geometry and sea level fluctuation of Abu Hamata Formation	141

	LIST OF PLATES	PAGE
Plate (2.1)	Field photos of Sarabit El Khadim Formation	27
Plate (2.2)	Field photos of Sarabit El Khadim Formation	29
Plate (2.3)	Field photos of Abu Hamata Formation	36
Plate (2.4)	Field photos of Abu Hamata Formation	38
Plate (2.5)	Field photos of Abu Hamata Formation	43
Plate (3.1)	Petrography of conglomerate microfacies associations	59
Plate (3.2)	Petrography of sandstone microfacies associations	61
Plate (3.3)	Petrography of sandstone microfacies associations	63
Plate (3.4)	Petrography of sandstone microfacies associations	65
Plate (3.5)	XRD, SEM micrograph and Petrography of mudstone microfacies associations	67
Plate (3.6)	Petrography of limestone microfacies associations	69
Plate (4.1)	Trace fossils of Arencolites and Gordia marina Emmons	87

Plate (4.2)	Trace fossils of Bergaueria sucta Seilacher	91
Plate (4.3)	Trace fossils of Cruziana salomonis Seilacher	96
Plate (4.4)	Trace fossils of Cruziana salomonis Seilacher	98
Plate (4.5)	Trace fossils of Dimorphichnus cf. obliquus & cf. quadrifidus	102
Plate (4.6)	Trace fossils of Diplichnites isp.	106
Plate (4.7)	Trace fossils of <i>Planolites vulgaris</i> Nicholson and Hinde	110
Plate (4.8)	Trace fossils of <i>Planolites</i> isp.	112
Plate (4.9)	Trace fossils of Rusophycus isp. and Skolithos isp.	117

	TABLES	PAGE
Table (1.1)	Correlation chart of the Paleozoic rocks of Egypt	10
Table (1.2)	Different classification and nomenclature of Paleozoic succession, west Central Sinai, Egypt	11
Table (2.1)	Lower Paleozoic Cambrian rock units in um Bogma area, Sinai, Egypt	18
Table (2.2)	Locations of the measured and studied stratigraphic sections	19
Table (4.1)	Scheme indicating relationships of ichnofacies with environment	78
Table (6.1)	The Cambrian sediments stratigraphic relations in North Egypt and the neighboring countries	145

CHAPTER ONE

INTRODUCTION

CHAPTER ONE INTRODUCTION

1.1. PREAMPLE

Egyptian Paleozoic sediments have a special interest in natural resources prospecting including hydrocarbons, manganese oxides, kaolinite, turquase, glass sand and radioactive minerals. These sediments have widespread distrribution in the Egyptian terriotery and nighbouring counteries. In subsurface studies, these clastics are lumped together and known as Nubia sandstone from older to younger as D, C, B, and A. They are of Cambrian-Lower Cretaceous age. These sediments represent the valuble producive reservoir in many fields in the Gulf of Suez, such as Ras Badran and Zeit Bay oil fields of Suez Zeit Company. Except for the marine Carboniferous carbonates, scarcity of fossil contents and the clastics natures of the Paleozoic sediments were reasonses for contraversity in stratigraphic divisions and defintion of rock units and stratigraphic boundaries especially in subsurface studies. The Lower Cambrian clastics have distinguishble lower bounary representing by the non-conformity surface with Precambrian basement complex. On the other hand, the upper boundary is unclear and needs more investigations. Using the ichnological and microfacies characterization suppose to provide some constrains to define the Cambrian sediments boundaries and their environments of deposition. So the present work is intended to concern with ichnological investigation, microfacies and paleoenviroments characterization for the Lower Cambrian sediments of Um Bogma area which represent the closeby surface analouge for the off shore hydrocarbon reservoirs in Gulf of Suez rift.

1.2. LOCATION OF THE STUDY AREA.

The study area is located in West Central Sinai, Egypt (Fig. 1.1). It is bounded by the following coordinates: longitudes between 33° 15° and 33° 30° E and latitudes between 28° 55° and 29° 10° N. The area under consideration can be reached from the Suez city through the Suez