

Ain Shams University Faculty of Engineering Electronics and Communications Department

Design of High Performance Pipelined ADC A Thesis

Submitted in partial fulfillment for the requirements of Master of Science degree in Electrical Engineering

Submitted by:

Hussein Adel Hussein Ali

B.Sc. of Electrical Engineering (Electronics and Communications Department)
Ain Shams University, 2006.

Supervised by: Prof. Dr. Hisham Haddara Dr. Mohamed A. Dessouky

Cairo 2010

Curriculum Vitae

Name: Hussein Adel Hussein Ali

Date of Birth: 26/11/1983
Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: June 2006

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Hussein Adel Hussein Ali

Date: 01/01/2010

Acknowledgments

All praise is due to Allah, Most Merciful, the Lord of the Worlds, Who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

I wish to express my utmost gratitude to my supervisors, Professor Hisham Haddara and Dr. Mohamed Dessouky for their exceptional guidance, encouragement, flexibility, insightful thoughts and useful discussions. Professor Hisham is a model of dedication and integrity anyone should look up to. I am deeply indebted to Dr. Mohamed, whose guidance, stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis. I have learned from him how to stay focused and how to realize an effective research. I am in no way capable of appropriately thanking him for his great help to me.

I owe my deepest gratitude to Prof. Marie-Minerve LOUERAT and Dr. Hassan Aboushady, of LIP6, University of Paris VI, for their great help and support during my stay in Paris and research in LIP6. Their continuous guidance and encouragement were a great boost to this work. Words fail me to express my appreciation to them.

Special thanks goes to my colleagues at LIP6: Dr. Roselyne CHOTIN-AVOT, Vincent MOULU, Ahmed Ashry, Mootaz Allam and Diomadson Belfort for their generous help during my research. Without the aid of Dr. Roselyne and Vincent, and their participation in the digital design, chapter five would not have been possible. Thanks to Ahmed Ashry and Mootaz Allam for their help in the thesis revision and the wonderful times we spent together in LIP6. Thanks to Diomadson Belfort for his generous help and support in IT problems.

I am indebted to Yousr Abdelmaksoud for the many fruitful discussions and providing his MATLAB models for reuse. His work represents my initial step for my research. I am so grateful to Mostafa Sakr for the invaluable digital design discussions as well as helping me revise the thesis. Thanks to Ahmad Othman and Ahmed Safwat for being my trustful friends and for their participation in the thesis revision. Thanks to Mohamed Elbadry for the good times we spent together and for his tremendous help in introducing me to Latex for writing down my thesis. I wish also to express my gratitude to Ayman Osama for his generous help and guidance during the M.Sc. discussion procedures.

My parents deserve special mention for their inseparable support and prayers. My Father in the first place is the person who put the fundament of my learning character, showing me the joy of intellectual pursuit ever since I was a child. My Mother is the one who sincerely raised me with her caring and gentle love. Finally, I would like to thank everybody who was important to the successful realization of the thesis, as well as expressing my apology that I could not mention personally one by one.

Hussein Adel Hussein Ali Electrical and Communications Department Faculty of Engineering Ain Shams University Cairo, Egypt 2009

Abstract

Hussein Adel Hussein Ali, "Design of high perfomance pipelined ADC", Master of Science dissertation, Ain Shams University, 2010.

The thesis introduces calibration techniques as a method to achieve a high performance pipelined ADC with low power consumption. Digital calibration is suitable for the new sub-100nm technologies, as it benefits from the enhanced digital circuitry to relax the specifications of the analog circuits, which are impacted negatively by technology scaling.

To examine the extent of performance enhancement of the pipelined ADC due to digital calibration, two calibration techniques are proposed to calibrate an already designed ADC. The first one is a foreground technique which corrects for linear and non-linear errors. This technique does not require any modifications in the ADC, but it needs the ADC to be taken offline to perform calibration. The second technique is a concept validation for split ADC background calibration by using two identical versions of the designed ADC. This technique is efficient and works in the background while the ADC is online. However, it corrects for linear errors only.

Digital implementation is done on 65 nm technology for the foreground technique to examine the digital power and area overhead of the calibration technique.

Simulation results for the two proposed calibration techniques are presented, which show a significant enhancement in the ADC performance.

Key words: pipelined ADC, DEC, Linear Errors, Non-Linear Errors, Digital Calibration, Calibration Reference, Calibration Methodology, Input Forcing, Deterministic Approach, Statistical Approach, Split ADC

Summary

Chapter 1 includes thesis introduction and motivation for resorting to digital calibration techniques to design high performance ADCs in the new sub-100nm technologies. This chapter ends with the thesis outline..

Chapter 2 presents an overview of pipelined Analog-to-Digital Converters (ADC). Basic concepts such as sampling and quantization are explained along with definitions for a number of metrics used to characterize static and dynamic performance of ADCs. The pipelined ADC architecture is then presented with a discussion of the pipelined stage non-idealities and their effect on the ADC transfer function.

Chapter 3 presents and classifies an up-to-date literature review of state-of-the-art calibration techniques for pipelined ADCs. Definitions of various classifications for calibration are presented along with an introduction to the calibration concept. A practical classification is then introduced which differentiates between the reference of calibration for error detection and its method of correction. A detailed explanation for different calibration schemes is presented.

Chapter 4 presents two techniques for calibrating an already existing pipelined ADC. The first technique is a foreground technique, while the second one is a concept validation for a background calibration technique using split ADC concept. A brief description of the proposed ADC test chip is presented which is prepared for laboratory measurements. Distortion due to the reduced open loop gain of the residue amplifier is discussed.

Chapter 5 presents the digital implementation of the proposed foreground calibration. Area and power of the synthesized digital implementation are reported. Simulation results for the two proposed calibration techniques are presented.

The thesis ends by conclusions and future work.

Contents

Li	st of	tables		X
Li	st of	figures		xi
Li	st of	Symbols		xvi
Li	st of	Abbreviations		xvii
1	Intr	oduction		1
	1.1	Motivation		1
	1.2	Thesis Outline		4
2	Pip	elined Analog-to-Dig	gital Converters: An Overview	5
	2.1	General aspects of Ana	alog-to-Digital Conversion	5
		2.1.1 Quantization in	n Analog-to-Digital Conversion	6
		2.1.2 Sampling in Ar	nalog-to-Digital Conversion	9
		2.1.3 Analog-to-Digi	tal Converter specifications	14
		2.1.3.1 Static	e specifications	15
		2.1.3.2 Dyna:	mic specifications	18
	2.2	Pipelined Analog-to-D	Digital Converter	18
		2.2.1 Digital Error C	Correction	21
	2.3	Pipelined stage non-id	eality	23
		2.3.1 Analog-to-Dig	ital Sub-Converter errors	24
		2.3.2 Sampling capac	citors mismatch	27

		2.3.3	Residue amplifier gain error		28
		2.3.4	Residue amplifier non-linearity		30
	2.4	Conclu	sion		31
3	Cali	ibratio	techniques for piplelined ADCs: A practical classificati	on	32
	3.1	Calibr	tion techniques for pipelined ADCs : An overview		32
	3.2	Calibr	tion reference		37
		3.2.1	Input forcing		38
			3.2.1.1 Foreground calibration		38
			3.2.1.2 Not-so-true background calibration		44
			3.2.1.3 Stages replacement background calibration		46
		3.2.2	Deterministic approach		46
			3.2.2.1 Extra accurate converter		47
			3.2.2.2 Pseudo Random Sequence insertion		50
			3.2.2.3 Split ADC		59
			3.2.2.4 Multiple residue modes		66
		3.2.3	Statistical approach		68
	3.3	Calibr	tion methodology		73
		3.3.1	Linear errors		73
		3.3.2	Non-linear errors		76
	3.4	Conclu	sion		78
4	Pro	\mathbf{posed}	Calibration techniques for an in-lab pipelined ADC		81
	4.1	ADC 1	estchip		81
	4.2	Foregr	ound Calibration		84
		4.2.1	Non-linear error estimation and correction		86
			4.2.1.1 Non-linear error estimation		87
			4.2.1.2 Non-linear error correction		88
		4.2.2	Foreground digital calibration system		90
	4.3	Backg	ound Calibration		92
		4.3.1	Split ADC concept validation using relative input offset		94
		$4\ 3\ 2$	Gain error mismatch correction in split ADC using LMS algorithms	am	96

			4.3.2.1 Introduction to LMS algorithm	98
			4.3.2.2 LMS algorithm for gain error mismatch correction	101
	4.4	Distor	tion due to low open loop gain of the feedback amplifier	103
	4.5	Conclu	sion	106
5	Digi	ital Im	plementation and Simulation results	107
	5.1	Foregr	ound calibration: Digital implementation	107
		5.1.1	Pre-adders	109
		5.1.2	Non-linear error correction (NLEC)	112
		5.1.3	Final-adders	112
		5.1.4	Linear error correction (LEC)	115
		5.1.5	Extraction of parameters for non-linear error correction update (nle	estlin) 115
		5.1.6	Parameter update loop for non-linear error correction (NLE_est) .	119
			5.1.6.1 MUX and startup	119
			5.1.6.2 Parameter update algorithm $(Nlec_update)$	122
			5.1.6.3 Final-adders and LEC	125
		5.1.7	Digital synthesis	125
	5.2	Foregr	ound calibration: Simulation results	127
	5.3	Split A	ADC background calibration: Simulation results	135
	5.4	conclu	sion	139
Co	onclu	sions		144
Future Work			146	
A RTL Codes for Digital Implementation			147	
References 1			157	

List of Tables

3.1	Comparison between analog and digital domain calibration	5
4.1	Linear errors calculations for the two ADCs	17
5.1	Digital synthesis of the main path	27
5.2	Simulation parameters and circuit specifications	30
5.3	Foreground calibration simulation results summary	31
5.4	1^{st} stage specifications	6
5.5	Split ADC simulation results summary	39

List of Figures

1.1	Normalized ADC power Dissipation versus SNDR	2
1.2	Digitally assisted analog trend [Murmann 07b]	3
2.1	Analog to digital conversion process	5
2.2	Ideal transfer function with the inherent quantization error	7
2.3	Ideal sampling, time and frequency domain	9
2.4	Real sampling, time and frequency domain	10
2.5	Errors caused by sampling time jitter	11
2.6	Equivalent number of bit versus the sampling jitter	13
2.7	Simple model of a sampler and its noise equivalent circuit	13
2.8	Differential Non-Linearity in an ADC	15
2.9	Integral Non-Linearity in an ADC	17
2.10	Equivalent system describing the INL error as pre-distortion effect	17
2.11	Block diagram of a pipeline A/D converter	19
2.12	SC implementation of a 1.5 bit/stage MDAC	20
2.13	Pipeline stage residue transfer curves	21
2.14	Pipeline stage residue transfer curves with reduced interstage gain	22
2.15	Modified 1.5 b/s residue characteristics	23
2.16	Response of a real coarse ASDC and corresponding residue	24
2.17	Effect of ADSC errors on the ADC transfer function	26
2.18	Response of a real DAC and corresponding residue	26
2.19	Effect of positive capacitors mismatch	27
2.20	Effect of negative capacitors mismatch	28
2.21	Effect of finite gain error	29

2.22	Impact of amplifier incomplete settling on the residue plot	29
2.23	Effect of residue amplifier non-linearity	30
3.1	A general pipelined ADC calibration system	36
3.2	Multi-stage calibration	37
3.3	Analog self-calibration principle [Y.M. Lin 91]	39
3.4	Pipelined ADC with digital calibration [A.N. Karanicolas 93]	41
3.5	Error measurement and correction by inspecting major code transitions	42
3.6	Calibration system using reference DAC [Verma 09]	43
3.7	Interpolation of a skipped sample replaced by an input used for testing $$. $$	45
3.8	Queue based calibration concept	45
3.9	Stage replacement background calibration	47
3.10	Basic idea of the extra converter calibration	48
3.11	Linearity evaluation method showing the FCs versus CCs	49
3.12	Calibration of pipelined ADC errors using code domain filtering concept .	50
3.13	Concept of inserting PRS for calibration	51
3.14	HDC for mth-order residue amplifier distortion [Panigada 06]	52
3.15	Interference from input signal on the error signal after de-correlation [Li 03]	54
3.16	Signal-to-dither ratio effect in background calibration with PRS dithering .	55
	Fixed-magnitude PN dithering [Shu 08]	56
3.18	Signal-dependent dithering [Shu 08]	57
3.19	Two-channel ADC architecture [Li 03]	58
3.20	Split ADC concept [J. McNeill 05]	60
3.21	Gain errors as a special case of DAC errors [Ahmed 08a]	60
3.22	Example split-ADC topology	62
3.23	Error estimation using split ADC calibration [Abdelmaksoud 09]	62
3.24	ADC characteristics after calibration	63
3.25	Effect of ADC offset and comparator threshold mismatch on split calibration	64
3.26	Gain error mismatch between the two ADC channels and its correction	65
3.27	Two residue modes of transfer [H. Van de Vel 09]	66
3.28	Digital post-processing for multiple mode residue calibration	67
3.29	Error estimation using single mode	69

3.30	Error estimation using two alternating modes	70
3.31	Histogram to estimate code gaps for linear error correction [Brooks 08]	71
3.32	Non-linear error correction using statistically based calibration	72
3.33	Residue and ADC transfer function with missing decision levels	74
3.34	Stage residue characteristics and ADC transfer function with missing codes	75
3.35	Digital error calibration methods [Abdelmaksoud 09]	75
3.36	Residue and ADC transfer function with amplifier non-linearity	77
3.37	Piece-wise linear approximation for non-linear error correction	78
4.1	An 11-bit pipelined ADC	82
4.2	The proposed ADC testchip	83
4.3	MUX for delivering the two ADC outputs in the same sampling period $$	84
4.4	Inaccurate analog to accurate digital threshold via DEC	85
4.5	Typical ENOB versus comparator offset in first stage ADSC	86
4.6	non-linearity effect on residue and ADC output transfer characteristics	87
4.7	1^{st} stage residue of a 2.5 bit/stage pipelined ADC after DEC	88
4.8	Non-linear error estimation for a 2.5 bit/stage ADC	89
4.9	3^{rd} order non-linearity correction for 1^{st} stage residue	90
4.10	code gaps at 1^{st} stage residue transitions	91
4.11	algorithm for detection of code gaps and error storage for correction. $\ \ . \ \ .$	92
4.12	proposed calibration system	93
4.13	Split ADC concept validation setup	94
4.14	Split ADC concept using relative input offset between the two ADCs	95
4.15	Linear errors extraction from the ADC output using 1^{st} stage raw bits	96
4.16	Linear calibration during online operation of the ADC	97
4.17	Gain error mismatch correction and linear calibration	99
4.18	LMS adaptive filtering	100
4.19	Gradient search of one-dimensional MSE surface	100
4.20	Learning curve of the LMS algorithm	101
4.21	Setup for gain error mismatch correction using LMS algorithm	102
4.22	Effect of distortion on the amplifier closed loop gain	104
4.23	output error due to non-linearity	105

5.1	Verification plan for digital implementation	108
5.2	High level foreground calibration system	110
5.3	Operation details of the pre-adders	111
5.4	Operation details of the NLEC	113
5.5	Operation details of the final-adders	114
5.6	Operation details of the LEC	116
5.7	Linear error extraction algorithm	117
5.8	Extraction of parameters for non-linear error correction update algorithm	118
5.9	High level description for parameter update loop	120
5.10	Algorithm for parameter update loop startup	121
5.11	Operation details of the multiplexer	123
5.12	Algorithm for parameter update loop	124
5.13	final-adders and LEC for the parameter update loop	126
5.14	Layout of the synthesized digital implementation	128
5.15	3^{rd} order non-linearity inclusion in the 1^{st} stage model	129
5.16	Non-linear error estimate versus correction parameter bcorr	131
5.17	ADC performance before calibration with HD	132
5.18	ADC performance after linear calibration only	133
5.19	ADC performance after non-linear calibration	134
5.20	ENOB versus comparator offset in first stage ADSC	135
5.21	ADC performance before calibration	137
5.22	ADC performance after calibration with no gain error mismatch	138
5.23	ADC performance with 5% gain error mismatch and LMS loop disabled	140
5.24	LMS loop performance	141
5.25	ADC performance with 5% gain error mismatch and LMS loop enabled	142