

Faculty of Engineering Structural Engineering Department

BEHAVIOR OF GYPSUM SHEATHED BEAM-COLUMN STEEL WALL STUDS

By

Amal Said Helmy Seliman Mohamed

B. Sc. Civil Engineering (2003) Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering

Supervised by

Prof. Dr. Abdelrahim Khalil Dessouki

Professor of Steel Construction and Bridges Structural Engineering Department Ain Shams University

Dr. Ahmed Hassan Yousef Abu Donia

Associate Professor Structural Engineering Department Ain Shams University

Cairo 2010

EXAMINERS COMMITTEE

Prof. Dr. Hassan Ahmed Osman	_
Professor of Steel Construction and Bridges	
Faculty of Engineering	
Ain Shams University	
Prof. Dr. Abd Elmoniem Amen	_
Professor of Steel Construction and Bridges	
Faculty of Engineering	
Helwan University	
Prof. Dr. Abdelrahim Khalil Dessouki	_
Prof. Dr. Abdelrahim Khalil Dessouki Professor of Steel Construction and Bridges	_
	_
Professor of Steel Construction and Bridges	
Professor of Steel Construction and Bridges Faculty of Engineering	_
Professor of Steel Construction and Bridges Faculty of Engineering	_
Professor of Steel Construction and Bridges Faculty of Engineering Ain Shams University	_
Professor of Steel Construction and Bridges Faculty of Engineering Ain Shams University Dr. Ahmed Hassan Yousef Abu Donia	_

Ain Shams University Faculty of Engineering Structural Engineering Department

Abstract of M.Sc. thesis submitted by	tted by:
---------------------------------------	----------

Amal Said Helmy Seliman Mohamed

Title of the Thesis:

BEHAVIOR OF GYPSUM SHEATHED BEAM-COLUMN STEEL WALL STUDS

Supervisors: 1) Prof. Dr. Abdelrahim Khalil Dessouki

2) Dr. Ahmed Hassan Yousef Abu-Donia

Registration Date: Examination Date:

ABSTRACT

This research studies the structural behavior of cold-formed steel wall studs taking into consideration the effect of gypsum board on their capacity under the influence of combined axial load and bending moment. Cold-formed steel sections are widely used in building construction, roof, floor and wall panels due to their high strength, ease of fabrication and construction as well as their relatively lightweight. Cold-formed steel wall frame systems are commonly used as the load bearing and non-load bearing walls in residential, industrial and commercial building construction. Gypsum board is a common lining material used in combination with cold-formed steel studs (C or Z-sections). These gypsum boards are attached to both flanges of the stud with screws at regular intervals.

The main aim of this research is to study the structural behavior of steel wall studs under the influence of combined axial load and bending moment taking into consideration the effect of gypsum sheathing on their capacity. The effect of various parameters such as screw spacing, thickness of studs, ratio of acting moment to nominal yield moment and the geometry of steel sections are studied.

For this purpose, the finite element computer package (Cosmos M/V2.6) is used to model the gypsum sheathed studs. A finite element model is presented including steel studs with gypsum boards modeled as springs. A verification of the model has been performed by comparing its results versus the results of some experimental studies.

An extensive parametric study is conducted to assess the effect of the various parameters on the axial capacity of the studs. The behavior of these studs is illustrated and tabulated in different graphs and tables showing different relations based on the finite element results. The finite element model has been used through the parametric study. Some design equations are proposed to obtain the axial capacity of gypsum sheathed beam-column steel wall studs.

Key words: Gypsum board, Cold-formed, Wall studs, Finite element analysis, Beam-column, Axial capacity, Screws.

ACKNOWLEDGEMENTS

First and foremost, praise and thanks to Almighty ALLAH, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Dr. Abdelrahim Khalil Dessouki for his invaluable guidance, support, and encouragement.

I also greatly appreciate the help, guidance and support provided by Associate Prof. Dr. Ahmed Hassan Yousef throughout all the stages of the research.

I would like to thank Eng. Heba Tarek Elnabarawy for her great help.

Finally, I would like to express my heartfelt appreciation to my parents and the whole family for lots of support.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Structural Engineering.

The work included in this thesis has been carried out by the author in the

Department of Structural Engineering, Ain Shams University, from

December 2005 to February 2010.

No part in this thesis has been submitted for a degree or a qualification at

any other University or Institution.

Date:

Signature:

Name: Amal Said Helmy

TABLE OF CONTENTS

Abstract	i
Acknowledgements	ii
Table of Contents	iii
List of Tables	iv
List of Figures	vi
Notations	vii
CHAPTER 1: INTRODUCTION	
1.1 General	1
1.1.1 Cold-Formed Steel Sections	1
1.1.2 Gypsum Sheathed Beam-Column Steel Wall Studs	2
1.2 Aim of the Research	2
1.3 Outlines of the Thesis	3
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	8
2.2 Load Carrying Capacity of Gypsum Sheathed Steel Wall	
Studs	8
2.2.1 The AISI 2000 Specification	8
2.3 Beam-Column Equation	9
2.4 Experimental Investigations	12

2.4.1 Experin	nental Tests on Cold-Formed Steel Wall
Frames Lined	with Plasterboard
2.4.2 Experim	nental Study on the Axial Behavior of Cold-
Formed Steel	Wall Studs and Panels
2.5 Numerical M	odeling of Steel Wall Studs
2.5.1 Numerio	cal Modeling of Cold-Formed Steel Wall
Frames	
2.5.2 Modelir	ng of Gypsum Sheathed Cold-Formed Steel
Wall Studs	
2.5.3 Modelir	ng of Gypsum Sheathed Cold-Formed Steel
Wall Studs	
2.6 Experimental	Tests on Cold-Formed Steel Wall Frames
Subjected to Axia	al and Bending Moment
2.7 The Main M	odes of Failure of Gypsum Sheathed Steel
Studs	
2.8 Summary	
CHAPTER 3: F	INITE ELEMENT MODEL OF GYPSUM
SHEATHED BI	EAM-COLUMN COLD-FORMED STEEL
WALL STUDS	AND MODEL VERIFICATION
3.1 Introduction.	
3.2 The Proposed	Numerical Analysis Technique
3.2.1 Finite E	lement Method
3.2.2 The Ele	ment Used
3.2.3 Geomet	ric Nonlinearities

3.2.3.1 Large Deflection Small Strain Analysis	42
3.2.4 Material Nonlinearities.	43
3.2.5 Element Stiffness Matrix	44
3.2.6 Element Matrix in Global Coordinate System	44
3.2.7 Types of Finite Element Techniques Used	45
3.2.8 Solution of Non – Linear Equations	46
3.2.8.1 Incremental Control Technique	46
3.2.8.2 Iterative Solution Methods	48
3.2.8.3 Termination Schemes	48
3.2.9 Adaptive Automatic Stepping Technique	49
3.3 Finite Element Computer Program Used in Study	50
3.4 The Proposed Finite Element Model	50
3.4.1 Description of Finite Element Model	51
3.5 The Experimental Work Used for Model Verification	<i>-</i> 1
	5454
3.5.2 Experimental Work by Maria and Julie (2006)	55
3.5.3 Results of the Experimental Analysis Versus the	
Proposed Finite Element Model	56
3.6 Summary	59
CHAPTER 4: PARAMETRIC STUDY OF GYPSUM	
SHEATHED COLD-FORMED BEAM-COLUMN STEEL	
WALL STUDS	
4.1 General	85
	85

	Investigations of Finite Element Results
	4.3.1 Thickness of Steel Studs (t)
	4.3.2 The Ratio between Web Height to Flange Width of
	Steel Studs (H/B)
	4.3.3 The Ratio between Moment Acting on the Section and
	the Nominal Yield Moment (M/M _y)
	4.3.4 Grade of Steel.
	4.3.5 The Ratio between Location of Moment Acting on the
	Section and the Length of Steel Studs "a/L"
	4.3.6 Spacing between Screws (S)
4.4	Summary
CI	HAPTER 5: FORMULATION OF DESIGN
	QUATIONS
E(
E(5.1	QUATIONS
E(5.1	QUATIONS Introduction
E (5.1 5.2	QUATIONS Introduction Formulation of Design Equations
E (5.1 5.2	Introduction
E (5.1 5.2	Introduction Formulation of Design Equations. 5.2.1 The Deduction of the Proposed Equation. Check of Equations Accuracy.
E (5.1 5.2	Introduction
5.1 5.2 5.3	Introduction. Formulation of Design Equations. 5.2.1 The Deduction of the Proposed Equation. Check of Equations Accuracy. 5.3.1 General. 5.3.2 Accuracy of the Formula with Respect to Finite Element Analysis.
5.1 5.2 5.3	Introduction
5.1 5.2 5.3	Introduction. Formulation of Design Equations. 5.2.1 The Deduction of the Proposed Equation. Check of Equations Accuracy. 5.3.1 General. 5.3.2 Accuracy of the Formula with Respect to Finite Element Analysis.
5.1 5.2 5.3	Introduction
5.1 5.2 5.3	Introduction. Formulation of Design Equations. 5.2.1 The Deduction of the Proposed Equation. Check of Equations Accuracy. 5.3.1 General. 5.3.2 Accuracy of the Formula with Respect to Finite Element Analysis. Summary.

6.2 Conclusions.	173
6.3 Recommendations for Future Studies	176

LIST OF REFERENCES

LIST OF TABLES

Table (3-1): Geometry and Properties of Sections Tested by	
Kesti	55
Table (3-2): Comparison between Test Results Obtained by	
Kesti and Finite Element Results.	56
Table (3-3): Comparison between Test Results Obtained by	
Maria and Finite Element results	58
Table (4-1): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with (M/M_y) =0.1, a/L=0.5 and	
Various thickness (t), Various (H/B) and Steel 37	103
Table (4-2): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with $(M/M_y) = 0.1$ and Steel 37	104
Table (4-3): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with (M/M_y) =0.2, a/L=0.5 and	
Various Thickness (t), Various (H/B) and Steel 37	105
Table (4-4): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with $(M/M_y) = 0.2$ and Steel 37	106
Table (4-5): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with (M/M_y) =0.3, a/L=0.5 and	
Various Thickness (t), Various (H/B) and Steel37	107
Table (4-6): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with $(M/M_y) = 0.3$ and Steel 37	108

Table (4-7): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with $(M/M_y) = 0$, a/L=0.5 and Various	
Thickness (t), Various (H/B) and Steel 37	109
Table (4-8): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with $(M/M_y) = 0$ and Steel 37	110
Table (4-9): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t=1), a/L=0.5 and	
Various (M/M _y)	111
Table (4-10): Relationship between Screw Spacing and the	
Ratio (P _u /P _y) for Studs with Thickness (t=1.5), a/L=0.5 and	
Various (M/M _y)	112
Table (4-11): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t=2), a/L=0.5 and	
Various (M/M _y)	113
Table (4-12): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t=3), a/L=0.5 and	
Various (M/M _y)	114
Table (4-13): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t)=3mm, (M/M_y)	
=0.1, a/L=0.5 and Various Steel Grade (37,44,52), Various	
(H/B)	115
Table (4-14): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with $(M/M_y) = 0.1$, a/L=0.5 and Various Steel Grade (37, 44,	
52)	116

Table (4-15): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t)=3mm, (M/M_y)	
=0.2, a/L=0.5 and Various Steel Grade (37,44,52), Various	
(H/B)	117
Table (4-16): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with (M/M _y) =0.2, a/L=0.5 and Various Steel Grade	
(37,44,52)	118
Table (4-17): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t)=3mm, (M/M_y)	
=0.3, a/L=0.5 and Various Steel Grade (37,44,52), Various	
(H/B)	119
Table (4-18): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with (M/M_y) =0.3, a/L=0.5 and Various Steel Grade (37,44	
,52)	120
Table (4-19): Relationship between Screw Spacing and the	
Ratio (P_u/P_y) for Studs with Thickness (t)=3mm, (M/M_y) =0,	
a/L=0.5 and Various Steel Grade (37,44,52), Various	
(H/B)	121
Table (4-20): Ratio between Failure Load of Studs Connected	
to Gypsum Boards & Studs without Gypsum Boards for Studs	
with $(M/M_y) = 0$, a/L=0.5 and Various Steel Grade (37,44	
,52)	122

Table (4-21): Relationship between Screw Spacing and the	
Ratio (P _u /P _y) for Studs with Thickness (t)=3mm, Various	
(M/M _y) and Various (a/L), Various (H/B)	123
Table (5-1): Ratio between Failure Load Calculated from the	
Proposed Equation and Those Calculated from the Finite	
Element Analysis for Specimen with S=200mm at (t) =1,	
a/L=0.5and Steel 37 at Various (M/M _y) and (H/B)	163
Table (5-2): Ratio between Failure Load Calculated from the	
Proposed Equation and Those Calculated from the Finite	
Element Analysis for Specimen with S=200mm at (t) =2,	
a/L=0.5and Steel 37 at Various (M/M _y) and (H/B)	164
Table (5-3): Ratio between Failure Load Calculated from the	
Proposed Equation and Those Calculated from the Finite	
Element Analysis for Specimen with S=200mm at (t) =3,	
a/L=0.5and Steel 37 at Various (M/M _y) and (H/B)	165