STUDIES ON THERAPEUTIC EFFECTS OF LOW FREQUENCY PULSED ELECTROMAGNETIC FIELDS ON RAT LIVER CANCER

A Thesis

Presented to the Medical Research Institute
University of Alexandria
In Partial Fulfillment of the
Requirements for the Degree

of

Master of Science

in

Medical Biophysics

By

Safa Osama Hasan Emara

B.Sc. in Biophysics Faculty of Science AL-Azhar University, 2005

STUDIES ON THERAPEUTIC EFFECTS OF LOW FREQUENCY PULSED ELECTROMAGNETIC FIELDS ON RAT LIVER CANCER

Presented by

Safa Osama Hasan Emara

B.Sc. in Biophysics Faculty of Science AL-Azhar University, 2005

For the Degree of

Master of Science

in

Medical Biophysics

Examiners' committee	Approved
Prof. Dr. Fadel Mohamed Aly Professor of Biophysics Faculty of Sciences, Cairo University	
Prof. Dr. Youssef Selim Youssef Professor of Biophysics Medical Research Institute Alexandria University	
Prof. Dr. Soheir Mahmoud EL- Kholy Professor of Biophysics Medical Research Institute Alexandria University	
Dr. Amani Hussein Kazem Assistant Professor in Pathology Department Medical Research Institute Alexandria University	

Advisors' committee	
Prof. Dr. Soheir Mahmoud EL- Kholy Professor in Biophysics Department Medical Research Institute Alexandria University	
Dr. Amani Hussein Kazem Assistant Professor in Pathology Department Medical Research Institute Alexandria University	
Dr. Neveen Abd-Elmoneim Hussein Lecturer in Applied Medical Chemistry Department Medical Research Institute Alexandria University	
Dr. Rasha Saed Shams Al-dein Fellow of Biophysics Department Medical Research Institute Alexandria University	

دراسات على التأثيرات العلاجية للمجالات الكهرومغناطيسية النبضية ذات التردد المنخفض

رسالة علمية

مقدمة إلى معهد البحوث الطبية - جامعة الإسكندرية إستيفاء للدراسات المقررة للحصول على درجة

الماجستير

الطبيعة الحيوية والطبية

صفا أوسامة حسن عمامرة

بكالوريوس علوم (قسم الفيزياء الحيوية) جامعة الأزهر-

دراسات على التأثيرات العلاجية للمجالات الكهرومغناطيسية النبضية ذات التردد المنخفض

بكالوريوس (قسم الفيزياء الحيوية) جامعة الأزهر

الماجستير

الطبيعة الحيوية والطبية

e ture est	/
الفيزيقا الحيوية	كلية العلوم
ره ، سليم يوسف	القاهر / به سف
الطبيعة الحيوية	معهد البحون
	معهد البعود جامعة الإسك
محمود الخولى	/سهير،
لطبيعة الحيوية شا الست	
	معهد البحون جامعة الإسك
ىين	/ أمائي حس
	معهد البحون ولموية الاسك

••••••	/ سهير محمود الخولى الطبيعة الحيوية معهد البحوث الطبية جامعة الإسكندرية
•••••••••••••••••••••••••••••••••••••••	/ أمانى حسين كاظم معهد البحوث الطبية جامعة الإسكندرية
•••••••••••••••••••••••••••••••••••••••	. / نيقين عبد المنعم حسين مدرس بقسم الكيمياء الطبية التطبيقية معهد البحوث الطبية حمهد البحوث الطبية جامعة الإسكندرية
	./رشا سعيد شمس الدين زميل قسم الطبيعة الحيوية معهد البحوث الطبية جامعة الإسكندرية

Acknowledgement

Before all, thanks to ALLAH, who gave me the strength and patience to fulfill this work.

I am deeply thankful and indebted to **Prof. Dr. Soheir Mahmoud EL- Kholy**, Professor in Medical Biophysics Department, Medical Research Institute, Alexandria University, for her kind supervision, continuous guidance and support, constant encouragement and generous help from the beginning to the very end of this work.

I would like to express my gratitude to **Dr. Amani Hussein Kazem**, Assistant Professor in Pathology Department, Medical Research Institute, Alexandria University, for her precious advise, constructive guidance and valuable support and effort in carrying out the pathological part of the study during the course of the work.

I can not express my gratitude to **Dr. Neveen Abd-Almonem Hussein**, Lecturer in Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, for her precious cooperation, willing assistance and support which made this work possible.

I would like to thank **Dr. Rasha Saeid Shams Al-dein**, Fellow of Medical Biophysics Department, Medical Research Institute, Alexandria University, for her sincere help and guidance during the study.

I would like to express my gratitude to **Prof. Dr. Geylan Abd el-Shafi Fadaly** Professor in Pathology Department, and **prof.Dr. Mona Yahya**, Professor in cell biology Department Medical Research Institute, Alexandria University, for their support and effort in carrying out the pathological part of the study.

I would like to express my gratitude to **Eng. Osama Hassan Emara**, Electrophysic standardization engineer, who designed and made exposure system (coil A and coil B) as a therapeutic devices.

would like to thank all staff and members of the Medical Biophysics Departmen for their unlimited help and support through this work. Finally, I would like to express my deepest gratitude to my family who supported and saw me through this work.

CONTENTS

Спар	ter	Page number
	i - Acknowledgments	1
	ii- Abbreviations	2
	iii- List of figures	4
	iv- List of tables	8
I-	Introduction	9
	Therapeutic effects of pulsed magnetic field on living cells	9
	Safety and standard of therapeutic devices	12
	Review of the articles that dealt with the therapeutic effect of pulsed Electromagnetic field on cancer	13
	Evaluation of available treatment to liver cancer	15
II-	Basic considerations	16
	2.1. History of magnetic therapy	16
	2.1.1 is it important to study Biomagnetism?	16
	2.1.2 The magnetic field, physical characteristics	16
	2.1.2.1 Space Orientation of magnetic fields	17
	2.1.2.2 Fields around coils	18
	2.1.2.3 Time variation	18
	2.1.2.4 Field Gradient	19
	2.2 Electromagnetic Spectrum	20
	2.3 Sources of magnetism on universe	21
	2.3.1 Earth's overall DC field – magnetic north and south poles .	21
	2.3.2 Rocks under our feet	21
	2.3.3 Schumann resonance · "Natural pulsed magnetic field"	21
	2.3.4. Other magnetic field sources	24
	2.4 Faraday's Law and current density	24
	2.5 Effects of Electromagnetic Fields on Cells: Physiological and Therape Approaches and Molecular Mechanisms of Interaction	eutical 26
	2.5.1 Physiological Relevance of EMF	26

Page number
rage

	2.5.2 Therapeutic Relevance of EMF	28
	2.5.3 Molecular Mechanisms of Interaction of Cells and Cell Organelles with Ele Magnetic Fields	ectro 28
	2.6 Overview of Liver Cancer	30
	2.6.1 Stages of Adult Liver Cancer	31
	2.6.2 Grade of Liver Cancer	32
	2.6.3 Blood Tests	32
	2.6.3.1 Alpha-fetoprotein	32
	2.6.3.2 Liver function tests	33
	2.6.3.3. Osmotic Fragility	35
	2.7 Model of hepatocarcinogenesis in human due to viral hepatitis by diethylnitrosamine	36
	2.8 The Electrical Properties of Cancer Cells	36
	2.9 Cell death mechanisms	41
	2.9.1 Apoptosis activation as a therapeutic strategy for cancer	41
	2.9.2 Necrosis activation as a therapeutic strategy for cancer	44
	2.9.3 Inflammatory infiltrate activation as a therapeutic strategy for cancer	45
III-	Aim of the Work	46
IV-	Material & Methods	47
	4.1 Method adapted to design and construct the exposure system	47
	4.1.1 Design of Schumann device (coil A)	47
	4.1.2 Design of: source of pulsed gradient magnetic field (Coil B)	50
	4.2 Wave shape specifications	53
	4.3 Magnetic field intensity measurements	53
	4.4 Exposure unit	54
	4.5 Induction of hepatocellular carcinoma	55
	4.6 Experimental animals and their groups	56
	4.7 Experimental procedure	57

Cha	napter	Page number

	4.8 Collection of blood samples	58
	4.9 Osmotic Fragility measurement	59
	4.10. Haematological study	60
	4.10.1. Estimation of Hemoglobin concentration	60
	4.10.2. Counting the total red blood cells	61
	4.10.3. Counting the total leucocytes blood cells	62
	4.10.4. Platelets counts	62
	4.11 Alfa Fetoprotein measurements	63
	4.12 Liver function tests	65
	4.12.1. Determination of alanine aminotransferase activity	65
	4.12.2. Determination of aspartate aminotransferase in serum	67
	4.12.3. Activity of Serum Gamma-Glutamyl-Transpeptidase	68
	4.13. Relative Liver weight study	70
	4.14 Dielectric properties of liver tissues	71
	4.15. Histopathological studies	73
	4.16. Electron Microscope studies	74
	4.17. Statistical Analysis	74
V-	Results	75
	5.1. Characterization of exposure system.	76
	5.1.1 Wave shape specifications	76
	5.1.2 Magnetic Field intensity measurements	79
	5.2 Osmotic Fragility studies	82
	5.3 Blood count studies	86
	5.4Feto Protien level:	95
	5.5 Liver function tests	98
	5.5.1 Serum ALT activity	98
	5.5.2 Serum AST activity	101
	5.5.3 Serum -GT activity:	104

Chapter		Page number
	5.6. Liver weight studies	107
	5.7. Dielectric studies	108
	5.8. Survival time	113
	5.9. Histopathological findings	114
	5.10. Electron microscope studies	124
VI-	Discussion	128
VII-	Summary and conclusion	136
VIII-	References	140
IX-	Arabic summary	

LIST OF FIGURES

rigure rage num	<u>ber</u>
2.1: Field density or strength (the field lines) from the surface of the magnetic system	17
2.2: Force lines of Static magnetic field	17
2.3: The three-dimensional field of different types of static magnetic	18
2.4: Magnetic fields around electrical coils.	18
2.5: Magnetic field from electromagnetic coil.	19
2.6: The field drops drastically at the edges of a static magnet.	19
2.7: The Electromagnetic Spectrum.	20
2.8: The Schumann Resonances.	22
2.9: Sample spectrum measured with the receiver.	23
2.10: Schumann signals and and -brain wave.	23
2.11: Magnetic signal a few mm above a culture of rat myocardial cells	24
2.12: Hall effect.	25
2.13: Structure of the nitrosamino group	36
2.14: Idealized dispersion regions for tissue.	40
2.15: Chemotherapy/radiotherapy-induced and p53-mediated activation of apoptosis via the intrinsic signaling pathway.	42
2.16: Potential therapeutic targets for apoptosis promotion.	43
2.17: Tentative cascade of events in necrotic cell death.	44
4.1: Helmholtz coil	47
4.2: Single Helmholtz coil magnetic field wave shape for one oscillator as recorded by single channel flatbed recorder (kipp & zonen BD 40).	48
4.3: Block Diagram of coil A circuit	48
4.4: Schumann device circuit and coil	49
4.5: Block diagram for coil B	50
4.6: Circuit components of coil B, A: dorsal view, B: side view.	52
4.7: Single channel flatbed recorder	53
4.8: Exposure procedure	54

Figure	Page number
4.9: Intraperitoneal injections	55
4.10: Timeline of the experimental design	57
4.11: Collection of blood from the Saphenous Vein	58
4.12: Filterphotometer (model Microlab 300)	59
4.13: Neubauer chamber	61
4.14: Standard curve of AFP concentration.	64
4.15: Standard curve of ALT concentration.	66
4.16: Standard curve of AST concentration	68
4.17: The constructed dielectric cell	71
4.18: LCZ Bridge Meter	72
4.19: JEOL-100 CX transmission electron microscope	74
5.1: Coil A induced voltage wave shape through search coil connecte to single recorder adjusted at 10 mm/sec and 50 mVolt.	channel flatbed 77
5.2: Coil B induced voltage wave shape through search coil connecte to single recorder adjusted at 10 mm/sec and 50 mVolt.5.3: Osmotic fragility curves for control unexposed group as a function of time	78
5.4: Osmotic fragility curves for control +coil A group as a function of time	83
5.5: Osmotic fragility curves for control +coil B group as a function of time	83
5.6: Osmotic fragility curves for HCC control group as a function of time	84
5.7: Osmotic fragility curves for HCC +coil A group as a function of time.	84
5.8: Osmotic fragility curves for HCC +coil B group as a function of time	84
5.8: Hemoglobin concentration (g/dL) of all studied groups .	88
5.9: RBCs count $(x10^{12}/L)$ of all studied groups .	90
5.10: WBCs count $(x10^9/L)$ of all studied groups.	92
5.11: Platelets count of all studied groups during exposure periods.	94
5.12: Serum AFP level of all studied groups during exposure periods	97
5.13: Serum ALT activities of all studied groups during exposure periods	100

Figure	Page number
5.14: Serum AST activities of all studied groups.	103
5.15: Serum GT activities of all studied groups.	106
5.16: The relative permittivity of liver as a function of frequency for all groups.	109
5.17: The electric conductivity of liver as a function of frequency for all groups.	. 110
5.18: The log of dielectric loss as a function of frequency Hz for all groups.	111
5.19: The Cole-Cole plotted as '' versus ' for all groups.	112
5.20: Well differentiated HCC	117
5.21: Moderately differentiated HCC all cells appear viable, note intranuclear cyto	oplasmic
inclusion(arrow) and multinucleated cells(arrow heads). (H&E X 400).	117
5.22: Well diff HCC treated by coil A showed high number apoptotic figures (arro	ows), some
have ring forms (double arrow heads). (H&E X 400).	118
5.23: Well diff HCC treated by coil A showed wide areas of necrosis (arrow) acco	ompanied by
mild lymphoplasmacytic infiltrate (arrow heads). (H&E X 400).	118
5.24: Moderate diff HCC treated by coil A showed Geographic areas of necrosis is	infiltrated by
neutrophils, histiocytes and lymphocytes (H&E X 100).	119
5.25: HCC moderately differentiated, treated by coil A showing frequent degenerate	ated cells with
vacuolated cytoplasm and frequent apoptotic cells and bodies(arrow), and n	noderate
inflammatory infiltrate(double arrows). (H&E X 400).	119
5.26: HCC moderately differentiated treated by coil A, moderately infiltrated by in	nflammatory
cells. (H&E X 400).	120
5.27: Well differentiated HCC treated by coil B showed moderate number of apop	otosis (arrows)
and necrosis. (H&E X 400).	120
5.28: Well differentiated HCC treated by coil B showed moderate inflammatory in	nfiltrate
accompanied by fibrous septae formation (arrow). (H&E X 400).	121
5.29: Moderately differentiated HCC treated by coil B, frequent apoptotic forms(a	arrows) and
lytic cells are seen(double arrow). (H&E X 400).	121
5.30: Moderately differentiated HCC treated by coil B showing moderate inflamm	natory infiltrate.
(H&E X 400).	122

Figure Pa	ige number
5.31: Normal liver exposed to coil A: Normal architecture is preserved. (H&E X 400). 122
5.32: Normal liver exposed to coil B: Normal liver architecture. (H&E X 400).	123
5.33: Normal liver unexposed to magnetic fields.	123
5.34: High power view liver cell of control group.	125
5.35: Groups of hepatocytes of DEN injected animals.	125
5.36: Liver cell of HCC+ coil A group	126
5.37: Liver cell of HCC+ coil A group.	126
5.38: Part of cytoplasm of liver cell of HCC+ coil B group.	127
5.39: Close up view of an apoptotic liver cell from HCC + coil A group	127