The Relationship between IL28B Genotypes and Hepatoma in Post HCV Cirrhotic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree

In Internal Medicine

 $\mathcal{B}y$

Mohamed Taha Abd Elgawad

(M.B.B.Ch) – Faculty of Medicine, Mansoura University

Supervised by

Prof. Dr. Osama Abo El fotoh Elsayed

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Moataz Mohamed Sayed

Assistant Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Amir Helmy Samy

Assistant Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Ain Shams University 2014

Acknowledgement

Before and above all, thank **ALLAH** for everything.

I am greatly honored to express my sincere gratitude, deepest appreciation to **Prof. Dr Osama Abo El fotoh Elsayed** for his precious time, unlimited help, outstanding guidance and kind support throughout the work.

I would like to express my deepest gratitude and appreciation to **Dr. Moataz Mohamed Sayed** for his generous help, guidance and unlimited support.

I would like also to thank to Dr. Amir Helmy Samy for the great work he has done for this study.

I would like to express my deepest gratitude and appreciation to **Dr. Sara Hassan**, assistant Consultant of clinical pathology, Ain Shams University for her generous help, guidance and faithful support.

 $\emph{\textbf{I}}$ would like to thank all patients who participated in this study and wish them a soon recovery.

I dedicate this work to my family who supported me all through this work.

May **ALLAH** accept the work of all those and reward them for it.

Mohamed Jaha Abd EL Gawad

Index

<u>Page</u>

List of tables	I
List of figures and diagrams	III
List of abbreviations	IV
Introduction & Aim of work	1-5
Review of Literature:	
Chapter one: Hepatitis C & Cirrhosis	5-46
Chapter two: IL28B	47-58
Chapter three: Hepatoma (H.C.C)	59-76
Patients and methods	77-81
Results	82-86
Discussion	87-93
Summary and conclusion	94-95
Recommendations	97
References	98-136
Arabic summary	······

List of Tables

Tal	ble No. Title Page No.
1.	Clinical Features of Cirrhosis
2.	Laboratory Findings in Cirrhosis
3.	Stages of liver injury in different screening systems 31
4.	FibroTest scoring system in different histological classifications
5.	Child-Pugh classification of severity of liver disease 34
6.	TNM Classification for Hepatocellular Carcinoma 69
7.	Anatomic stage/prognostic groups of H. C.C69
8.	Fibrosis score
9.	Histologic grade of H.C.C
10.	QRT-PCR procedure
11.	Show Demographic and Laboratory data among studied patients using Chi square test
12.	Comparison between studied groups as regard to genetic polymorphism using ANOVA test

13.	Comparison	between	different	polymorphisms	as	
	regard to sex	distribution	on using A	NOVA test	•••••	. 84
14.				polymorphisms NOVA test		. 85
15.	different para	ameters in	group (1)	polymorphisms a and group (2) us	ing	. 86

List of Figures and Diagrams

Fig	ure No. Title Page No.
1.	Structure of hepatitis C virus
2.	Symptoms of HCV
3.	Initiation and maintenance of fibrogenesis
4.	Clinical suspicion for advanced fibrosis
5.	The IL28–IL29 locus on chromosome 19. C
6.	Percentage of SVR by genotypes of rs12979860 50
7.	Sampling locations, allele frequencies and degree of regional differentiation of the rs12979860 C allele. The pie charts show the frequency of the C (green) and T (blue) alleles in each population sampled
8.	Multistep process of HCC development in chronic liver disease
9.	Diagnostic algorithm for suspected HCC. CT, computed tomography; MDCT, multidetector CT; MRI, magnetic resonance imaging; US, ultrasound 66
10.	BCLC algorithm (Updated BCLC staging system and treatment strategy, 2011)
11.	Comparison between studied groups as regard to genetic polymorphism

List of Abbreviation

5-HT1A	5-hydroxytryptamine receptor 1A
AASLD	American Association for the study of liver disease
AAT	Alpha 1-antitrypsin deficiency
AFP	Alphafetoprotein
ALD	Alcoholic liver disease
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
APRI	Aspartate aminotransferase/platelet ratio
AST	Aspartate aminotransferase
AT1	Angiotensin receptor 1
AUROC	Area under receiver operating characteristics
Bcl-2	B-cell lymphoma 2
BCLC	Barcelona Clinic Liver Cancer
BM	Bone marrow
BMI	Body mass index
BUN	Blood Urea Nitrogen
CB1	Cannabinoid receptor 1
CD 14	Cluster of differentiation 14
CHC	Chronic Hepatitis C Virus
CLIP	Cancer of the Liver Italian Program scoring system
CPT	Child-Pugh-Turcotte

CRS7	Cirrhosis risk score 7
CT	Computed tomography
DDX5	DEAD box protein 5
DEPDC5	DEP domain-containing 5
DLD	Decompensated liver disease
DNA	Deoxyribonucleic acid
EASL	European Association For The Study Of The Liver
ECM	Extra cellular matrix
EDHS	Egyptian Demographic Health Survey
EGF	Epidermal growth factor
ELF	Enhanced liver fibrosis
EMT	Epithelial-mesenchymal transition
ESLD	End stage Liver Disease
EVR	Early virological response
GGT	Gamma glutamyl tranferase
GSTM1	Glutathione S-transferase mu 1
GSTT1	Glutathione S-transferase theta 1
GWAS	Genome-wide association studies
HALTC	Hepatitis C Antiviral Long-term Treatment against Cirrhosis cohort
HAV	Hepatitis A virus
HbeAg	Hepatitis B E antigen
HbsAg	Hepatitis B Surface Antigen
HBV DNA	Hepatitis B Deoxyribonucleic acid
HBV	Hepatitis B virus

HCCHepatocellular carcinoma
HCVHepatitis C virus
HFEHemochromatosis
HIVHuman immunodeficiency virus
HSCsHepatic Stellate Cells
IASLInternational Association for the Study of the Liver
IFN kInterferon kappa
IFN α Interferon alpha
IFN λ Interferon lambda
IFNInterferon
IgGImmune globulins G
IL10Interleukin 10
IL28BInterleukin 28B
IL29Interleukin 29
IL-6Interleukin 6
INRInternational normalized ratio
ISGInterferon -stimulating genes
JAK-STAT Janus kinase–signal transducers and activators of transcription signaling cascade
KPakilo Pascal
LALLysosomal acid lipase deficiency
LBPElevated binding protein
LCTLiver cell transplantation
LFTsLiver function tests
LOXL2Enzyme Lysil oxidase-like-2

LPS	Lipopolysaccharide
LT	Liver transplantation
MDCT	Multidetector CT
MDM2	Mouse double minute 2 homolog
MELD	Model for End-StageLiver Disease
MICA	The human major histocompatibility complex class I chain-related gene A
MiRs	MicroRNAs
MMP	Matrix metalloproteinases
	Magnetic resonance imaging
MSCs	Mesenchymal stem cells serve
NAFLD	Non-alcoholic Fatty Liver Disease
NASH	Non-alcoholic steatohepatitis
NIHC	NIHConsensusStatement on Management of Hepatitis C
NK	Natural killer
NKT	Natural killer T cell
NTR	Nontranslated regions
p53	Tumor protein53
PBC	Primary biliary cirrhosis
PCR	Polymerase chain reaction
PEG-IFN	Pegylated Interferon
PELD	Pediatric End-Stage Liver Disease
PSC	Primary sclerosing cholangitis
PT	Prothrombin Time
RAS	Renin angiotensin pathway

RBV	Ribavirin
RCT	Randomized controlled trial
RFA	Radiofrequency ablation
RNA	Ribonucleic acid Of Hepatitis C Virus
RVR	Rapid virological response
SNPs	Single nucleotide polymorphisms
SPSS	Statistical package for social science
STAT-C	Specifically Targeted Antiviral Therapy for HCV
SVR	Sustained virological response
TACE	Transarterial chemoembolization
TE	Transient Elastography
TGF β1	Transforming Growth Factor Beta 1 receptor
TIMP	Tissue inhibitors of matrix metalloproteinase
TLR	Toll-like receptor pathway
TNFR-1	Tumor Necrosing Factor alpha 1 Receptors
	Tumor, node, and metastases staging system
U/S	Ultra Sound
USA	United states of America
UTRs	Untranslated regions
VEGF	Vascular endothelial growth factor
	World Health Organization
	Xeroderma pigmentosum, complementation group C

ABSTRACT

Background: Egypt has the highest prevalence of HCV worldwide 13.8 %. Over the past couple of years there has been a lot of studies supporting the role of IL28b in treatment response of HCV infected patients who are receiving interferon therapy. II28b is a cytokine that belongs to the interferon IFNlambda (type-III IFN) family. Il28b has 3 subtypes (CC, CT, TT): the treatment response to pegylated interferon with ribavirin has shown to differ according to the subtype present in each patient. 10% -20% of those who are chronically infected with chronic hepatitis C will progress to cirrhosis and 5% will develop hepatocellular carcinoma. Hepatocellular carcinoma (HCC) comprises nearly 6% of all incident cancer cases worldwide. (HCC) is the 3rd most frequent cause of the cancer mortality among men world wide. HCC) is the 2nd most frequent cause of cancer incidence and mortality among men in Egypt. Liver carcinogenesis is a complex and multi-factorial process, in which both environmental and genetic features interfere and contribute to malignant transformation. IL-28B rs12979860 (C/T) polymorphism and the (T/T) allele appears to be more prevalent in patients with ESLD (LC and HCC) (hepatoma & liver cell failure). Besides, the C/C genotype is protective against the development of chronic HCV infection as well as later at the final stages of the disease

Objective: The objective of the study is to determine a simple and easy test that can be applied to predict occurrence of hepatoma in post HCV cirrhotic patients. The aim of the study is to find a correlation between to determine the relationship between different types of (SNPs) Single- nucleotide polymorphisms of IL-28B gene and hepatoma in child B and C cirrhotic patients infected by hepatitis c genotype 4.

Methods: This study was conducted on 40 post HCV cirrhotic patients genotype (4) who were classified into:

- Group (1) 20 cirrhotic patients with Hepatoma
- Group (2) 20 cirrhotic patients without Hepatoma attended (Ain Shams university Hospital).
- IL28B genotyping by **Taq Man® Real- Time PCR** was done to all patients during the follow up visits to detect the type of IL28B polymorphism.

Results: As regard gene polymorphism, it was CC in 11 cases (27.5%), CT in 10 cases (25.0%) and TT in 19 cases (47.5%) and there was non-significant difference between group 1 and group 2; In group 1, the distribution was CC, CT and TT in 15.0%, 30.0% and 55.0% respectively; while in group 2, the distribution was CC, CT and TT in 40.0%, 20.0% and 40.0% respectively.

Conclusion: Our data suggest there is a relation between IL28B genotypes and development of hepatoma and hepatic decompensation.

Keywords: HCV, Cirrhosis, Hepatoma (H.C.C). IL28B.

INTRODUCTION

An estimated 270-300 million people worldwide are infected with hepatitis C. No vaccine against hepatitis C is currently available (**Houghton**, **2009**).

Prevalence is higher in some countries in Africa and Asia. Egypt has the highest seroprevalence for HCV, up to 20% in some areas. There is a hypothesis that the high prevalence is linked to a now-discontinued mass-treatment campaign for schistosomiasis, which is endemic in that country. Regardless of how the epidemic started, a high rate of HCV transmission continues in Egypt, both iatrogenically and within the community and household (Frank et al., 2000).

For genotype 1 hepatitis C treated with pegylated interferon-alpha-2a or pegylated interferon-alpha-2b combined with ribavirin, it has been shown that genetic polymorphisms near the human IL28B gene, encoding interferon lambda 3, are associated with significant differences in response to the treatment. This finding, originally reported in Nature, showed that genotype 1 hepatitis C patients carrying certain genetic variant alleles near the IL28B gene are more possibly to achieve sustained virological response after the treatment than others. A later report from Nature demonstrated the same genetic variants are also associated with the natural clearance of the genotype 1 hepatitis C virus (**Thomas et al., 2009**).

There is a relation between the gene II28b and early virological response (EVR) with interferon based therapy in Egyptian patients infected by HCV genotype 4 (Mohsen M. Maher et al., 2012).

Hepatocellular carcinoma (HCC) comprises nearly 6% Which incident cancer cases worldwide. overwhelming majority occurring in the developing world.one of the least curable malignancies. (HCC) is the 3rd most frequent cause of the cancer mortality among men world wide. chronic infection with hepatitis be virus (HBV) and he patitis C virus (HCV) have been cited as. by far the most important etiologic agent according to the world health organization (WHO) 350 million people are chronically infected with (HBV) and (HCV). The relative importance of (HBV) and (HCV) as causative agent can vary greatly from region to region and over time incidence of (HCC). In Egypt currently increasing, which may be a result of a shift in the relative importance of (HCV) and (HBV) as primary risk factors. (HCC) is the 2nd most frequent cause of cancer incidence and mortality among men in Egypt. hospital based studies from Egypt have reported an increase in the relative frequent of liver-related cancers in Egypt > 95% as HCC from nearly 4% in 1993 to 7.3% in 2003 (Lehman and Wilson et al., 2009).

Liver carcinogenesis is a complex and multi-factorial process, in which both environmental and genetic features interfere and contribute to malignant transformation. Patients with cirrhosis are particularly exposed and justify periodical screenings in order to detect the early development of hepatocellular carcinoma (HCC). The risk of HCC is, however, not identical from one patient to another. The identification of host factors that may also play an important role in HCC development may improve our understanding of the implications of the various biological pathways involved in liver carcinogenesis; such progress may as well help refine the selection of patients who could benefit from specific preventative measures or could be given adapted screening policies (Nahon and Zucman-Rossi, 2012).