Study of the role of CYP17 gene polymorphism in polycystic ovary syndrome

Thesis

Submitted for partial fulfillment of the M.D. degree in Clinical & Chemical Pathology

by

Dalia Ahmed Hamed Aly Diab

(M.sc. of Clinical & Chemical Pathology)

Supervised by

Prof. Dr. Mona Salem Khalil

Professor of Clinical & Chemical Pathology Faculty of Medicine, Cairo University.

Prof. Dr. Omayma Abd El Fattah Edris

Professor of Obstetrics & Gynecology Faculty of Medicine, Cairo University

Dr. Dina Farouk El Gayar

Assistant professor of Clinical & Chemical Pathology Faculty of Medicine, Cairo University.

Dr. Nevine Ez El Din El Abd

Assistant professor of Clinical & Chemical Pathology Faculty of Medicine, Cairo University.

Faculty of Medicine Cairo University. 2010

دراسة دور تعدد أشكال جين سى واى بى ١٧ فى مرض تكيس المبايض

در اسة مقدمة من

الطبيبة / داليا أحمد حامد على دياب

توطئة للحصول على درجة الدكتوراة في الباثولوجيا الاكلينيكية و الكيميائية

تحت إشراف

أ.د/ منى سالم خليل أستاذ الباثولوجيا الاكلينيكية و الكيميائية كلية الطب- جامعة القاهرة

أ.د/ أميمة عبد الفتاح إدريس أستاذ أمراض النساء و التوليد كلية الطب- جامعة القاهرة

د./ دينا فاروق الجيار أستاذ مساعد الباثولوجيا الاكلينيكية و الكيميائية كلية الطب- جامعة القاهرة

د./ نيفين عز الدين العبد أستاذ مساعد الباثولوجيا الاكلينيكية و الكيميائية كلية الطب جامعة القاهرة

كلية الطب جامعة القاهرة ٢٠١٠

Acknowledgement

First of all thanks to Allah the source of all knowledge and wisdom

I have the great pleasure to express my deep appreciation and gratefulness to **Prof**. **Dr**. **Mona Salem Khalil** professor of Clinical and Chemical pathology, faculty of Medicine, Cairo University for her scientific advice which was most valuable and her great effort in revising and supervising the whole work.

I would like to express my sincerest gratitude to **Prof**. **Dr**. **Omayma Abd El Fattah Edris** professor of Obstetrics & Gynecology, faculty of Medicine, Cairo University for her friendly attitude and kind supervision in conveying her experience to complete this work.

Words are few to express my deep gratitude and respect to **Dr**. **Dina Farouk EL gayar** assistant professor of Clinical and Chemical pathology, faculty of Medicine, Cairo University for her expanded experience, observations, and follow up that helped this work to attain its present shape.

Also I would like to thank **Dr**. **Nevine Ez El Din El Abd** assistant professor of Clinical and Chemical pathology, faculty of Medicine, Cairo University for her great support and advice.

A lot of thanks to Dr. **Mariane Samir** assistant professor of Clinical and Chemical pathology, faculty of Medicine, Cairo University for her valuable participation, advice and support in this study.

Words will never be enough to express my sincere thanks to my family & my husband for their kindness and motivation to complete this work.

Finally, thanks to all patients who have participated in this thesis.

ABSTRACT

Introduction: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder, which is the most common cause of anovulatory infertility and hirsutism. It is caused by an overproduction of androgen in theca interna cells. In the ovary, androgen synthesis is regulated by CYP17 gene, which encodes a single P450c17with both 17α -hydroxylase/17,20-lyase activities. In PCO patients, the promoter region of CYP17 gene contains a $T \rightarrow C$ substitution that leads to overexpression of that gene and creates a Sp1 site at position-34. This polymorphism generates a recognition site for the MspA1 restriction enzyme.

Subjects and methods: The present study was conducted on 28 PCOS patients compared to a control group of 26 healthy females of matching age. Serum levels of the hormones LH, FSH, free T. and DHEA-S were measured and the frequency of $T \rightarrow C$ substitution CYP17 gene promoter was investigated in all patients and controls

Results: The wild A1A1 alleles were found in 7 patients with PCOS (25%) and in 6 healthy women (23.1%). In 18 patients with PCOS (64.3%) and in 15 healthy women (57.7%), heterozygous A1A2 alleles were found. Homozygous A2A2 alleles were found in 3 patients with PCOS (10.7%) and in 5 healthy women (19.2%) There was no significant difference in the frequencies of CYP17 genotypes (A1A1), (A1A2),(A2A2) in PCOS patients compared with those in healthy women. Moreover, hormonal profiles were not significantly different in the patients with PCOS from both the homozygous and the heterozygous groups.

Conclusions: T→ C polymorphism CYP17 gene is not the primary genetic defect in PCOS and is not associated with steroid hormone synthesis in this disorder.

Key words: **PCOS**: Polycystic ovary syndrome, **CYP17**: cytochrome P450 17α-hydroxylase gene, **P450c17**:17α-hydroxylase/17,20-lyase, **LH**: luteinizing hormone, **FSH**: follicle stimulating hormone, **DHEA-S**: dehydroepiandrosterone sulfate, **free T**: free testosterone, **T**: thymine, **C**: cytosine

CONTENTS

Pag	ge
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	3
Chapter (1): polycystic ovary syndrome	3
- Physiology of ovulation	3
- The menstrual cycle	3
-Definition of PCOS	5
-The pathophysiology of PCOS	6
-Genetic Basis of the Syndrome 1	4
-Familial aggregation of the syndrome 1	16
-Intermediate and Long-Term Consequences Associated	
with PCOS	19
-Clinical Features	22.
- Laboratory investigation of PCOS	26
-Management of polycystic ovary syndrome	29
• Chapter(2): Cytochrome P 450	30
- Nomenculature	30
- Site	30
- Structure	31
- Functions	31
- Classification	35
- Functions of some human P450s and diseases	
caused by defects in PCOS	37

•	Chapter(3): Cytochrome P 17

-	Gene location	39
-	Function	39
-	Regulation of CYP17 expression	41
-	Gene variants	46
-	Gene-gene interaction	47
-	CYP17 and other diseases	47
-	Methods of Assay of CYP17gene polymorphism	49
SUBJECTS ANI	O METHODS	51
RESULTS		70
DISCUSSION	•••••••••••••••••••••••••••••••••••••••	82
SUMMARY		90
REFERENCES.		92
APPENDIX		

ARABIC SUMMARY

LIST OF ABBREVIATIONS

A Adenine

AC..... Adenylate cyclase

Ah..... Aryl hydroarbon

ASO...... Allele specific oligonucleotide

ACTH Adreno corticotrophic hormone

B-HCG Beta-human chorionic gonadotropin

BMI..... Body mass index

C Cytosine

cAMP 3',5'cyclic adenosine monophosphate

COMT Catechol-O- methyl transferase

CYP Cytochrome P 450

DGK Diacylglycerol kinase

DHEA-S Dehydroepiandrosterone sulfate

DNA Deoxyribonucleic acid

dNTPs..... Deoxnucleotide triphosphates

EDTA..... Ethylene diamine tetraacetate

ERK..... Extracellular –signal regulated kinase

FAD Flavin adenine dinucleotide

FMN Flavin mononucleotide

Free T. Free testosterone

FSH	Follicle stimulating hormone
G	Guanine
GnRH	Gonadotropin releasing hormone
Н	Hydrogen
HAIR-AN	Hyperandrogenic insulin resistant- acanthosis nigricans
HDL	High- density lipoprotein
IRMA	Immunoradiometric assay
LDL	Low- density lipoprotein
LH	Luteinizing hormone
MAPK	Mitogen-activated protein kinase
m RNA	Messenger ribonucleic acid
NaCl	Sodium chloride
NADH	Reduced nicotinamide adenine dinucleotide
NADPH	Reduced nicotinamide adenine dinucleotide phosphate
NF_1	Nuclear factor _1
NIH	National Institute of Health
NICHHD	National Institute of Child health and Human Development
P value	Propability
PA	Phosphatidic acid
PCOS	Polycystic ovary syndrome

PCR	Polymerase chain reaction
PKA	Protein kinase A
PPAR	Peroxisome proliferators activated receptor
r	Regression coefficient
RBC's	Red blood cells
RFLP	Restriction Fragment Length Polymorphism
RIA	Radioimmunoassay
RXR	Retinoid X receptor
SDS	Sodium Dodecyl Sulfate
SHBG	Sex hormone- binding globulin
SP_1	Specificity protein_1
SF_1	Steroidogenic factor_1
T	Thymine
TBE	Tris-borate EDTA.
TGF- β	Transforming growth factor _β
TSH	Thyroid stimulating hormone
5'UTR	5'-Untranslated region
VNTR	Variation in number of tandem repeats

LIST OF FIGURES

	Page
Figure (1): The menstrual cycle	4
Figure (2): The pathophysiology of PCOS	7
Figure (3): Insulin resistance, hyperinsulinemia and PCOS	13
Figure (4): The picture of PCOS	15
Figure (5): CYP17A1 gene in genomic location	39
Figure (6): The major steroid biosynthetic pathways in the ovary	40
Figure (7): Involvement of ERK activity in the control of Thecal steroidogenesis	41
Figure (8): Mean FSH (m IU /ml) level in the studied groups	71
Figure (9): Mean free testosterone (pg/ml) level in the studied group	os72
Figure (10): Mean DHEA-S(ug/dl) level in the studied groups	72
Figure (11): Median LH/FSH ratio in the studied groups	73
Figure (12): Median LH(m IU /ml) level in the studied groups	. 73
Figure (13): Correlation between F. test and DHEA-S levels in the studied groups	74
Figure (14): Identification of the polymorphic allele of CYP17 gene	75
Figure (15): frequencies of CYP17 genotypes in patients with PCOS versus control group	. 76
Figure (16): Mean BMI among the three genotypes of CYP17 gene in the studied groups	77
Figure (17): Mean FSH (m IU /ml) level among the three genotype of CYP17 gene in the studied groups	

Figure (18): Mean F.test(pg/ml) level among the three genotypes of CYP17 gene in the studied groups	.79
Figure (19): Mean DHEA-S(ug/dl) level among the three genotypes of CYP17 gene in the studied groups	80
Figure (20): Median LH(m IU /ml) level among the three genotypes of CYP17 gene in the studied groups	80
Figure (21): Median LH/ FSH among the three genotypes of CYP17 gene in the studied groups	81

LIST OF TABLES

	Page
Table (1): Summary of the studies of familial aggregation in PCOS	. 16
Table (2): Candidate genes investigated for their possible association with PCOS	18
Table (3): The Intermediate and long term consequences of PCOS.	20
Table (4): Diagnostic criteria for the diagnosis of PCOS	23
Table (5): Differential Diagnosis of hyperandrogenism	24
Table (6): Laboratory tests for PCOS	28
Table (7): Classification of cytochrome P450 genes	35
Table (8): PCR reaction mixture	61
Table (9): Hormonal profile expressed as mean ± standard deviation	70
Table (10): LH levels and LH/FSH ratio expressed as median & percentiles	72
Table (11): Frequencies of A1 and A2 alleles in patients with PCOS versus control group	75
Table (12): Mean BMI among the three genotypes of CYP17 gene in the studied groups	76
Table (13): frequencies of PCOS signs among the 3 genotypes in patients	77
Table (14): Relation of hormonal levels measured in the study to the polymorphic alleles of CYP17 gene	78

INTRODUCTION

Polycystic ovary syndrome(PCOS) is one of the most common endocrine dysfunctions affecting >10% of women of reproductive age (*Kahsar-Miller et al.,2004*). This disorder is associated with oligomenorrhea, infertility, hirsutism, obesity, persistent anovulation, fibrotic cystic ovaries and, rarely, virilism (*Ben-Rafael and Orvieto*. 2000).

Ovarian androgen overproduction has been implicated in the pathogenesis of hyperandrogenism which is characteristic of PCOS (*Maitra et al.*,2005).

The rate-limiting reaction of androgen synthesis in the ovary is the hydroxylation of progesterone at carbon 17 accompanied by cleavage of C17-20 bond to produce androstenedione. The reaction is catalysed by 17α -hydroxylase/17-20 lyase enzyme complex involving cytochrome P450c17 as a terminal electron acceptor (*Miller.*,2002).

The humam gene encoding cytochrome P450c 17 (CYP17) is expressed in the adrenal gland and the ovarian theca cells, its promoter region has several Sp1 sites (CCACC). It has been demonstrated that in some women with PCOS, the region encoding 5'-UTR of CYP17 gene contains a $T\rightarrow C$ substitution at position -34bp, thus generating an additional Sp1 site (*Kahsar-Miller et al, 2004*).:

It has been postulated that the additional Sp1 site might be responsible for the excessive expression of CYP17 gene and the overproduction of androgens, which ultimately could lead to PCOS (*Wickenheisser JK et al.*, 2004).

AIM OF THE WORK:

This work aimed at finding the possible correlation between CYP17 gene polymorphism and PCOS, by comparing the frequencies of the polymorphic allele in a group of women with PCOS with a group of healthy women and detection of the similarities and differences of the hormonal profiles.

Subjects and Methods

Subjects

Twenty eight female patients, of age ranged (18-38) years, recruited from the gynaecology outpatient clinic at Kasr Al-Aini hospital, Cairo University, were studied. Twenty six age matched females with regular ovulatory cycles were taken as control group.

The patients' chief complaints were failure of conception, menstrual disturbance and or undesired body hair. They were diagnosed as polycystic ovary syndrome, by means of history taking, clinical examination and ultrasonography.

Selection criteria

The patient was selected only if she applies to the diagnostic criteria for polycystic ovary syndrome based on the consensus definition specified in Rotterdam conference (2003).

A pelvic ultrasound proving the presence of at least more than 8 subcapsular follicles of 3-8 mm diameter in one plane, in one ovary with an increased stroma. Together with at least one of the following symptoms: oligomenorrhea, or amenorrhea, hirsutism, or acne.

All selected cases were subjected to the following:

A) Thorough history taking:

Each patient was questioned for her age, duration of complaint, symptoms suggestive androgen excess in the form of hirsutism and, menstrual disturbance.