Detection of Intratubular Germ Cell Neoplasia among Azoospermic patients

Thesis

Submitted for the partial fulfillment of M.Sc degree in Dermatology, Andrology and STDs

By

Nadia Mansour Abd El-Hady (M.B.B.Ch) Cairo University

Supervisors

Prof. Ahmed Omar El Karaksy

Professor of Andrology, Sexology and STDs

Faculty of Medicine - Cairo University

Prof. Hany Khattab

Professor of Pathology

Faculty of medicine- Cairo University

Dr. Hossam Al-Din Hosni Ahmad

Lecturer of Andrology, Sexology and STDs

Faculty of Medicine – Cairo University

Faculty of Medicine, Cairo University
2010

Acknowledgment

Without the help of **Allah** and support of my supervisors this thesis would not have been accomplished.

It is pleasure to express my deep gratitude and thanks to **Prof. Ahmed Omar El Karaksy**, Professor of Andrology, Sexology and STDs, Faculty of Medicine, Cairo University, for his very constructive and meticulous supervision of this work. No words can express my deep appreciation.

I am deeply thankful and indebted to **Prof. Hany Khattab**, Professor of Pathology, Faculty of Medicine,
Cairo University, for his kind help, patience and support
over the period of this research.

My thanks and gratefulness is also forwarded to.

Dr. Hossam Al-Din Hosni Ahmad, Lecturer of
Andrology, Sexology and STDs, Faculty of Medicine,
Cairo University, for his support and real cooperation.

TABLE OF CONTENTS

Acknowledgement		
List of abbreviations I		
Introduction	III	
Aim of the work	V	
Review of literature		
• Normal Histology of the testis	1	
• Pathology	16	
• Cytogenetics	25	
• Diagnosis and screening	28	
High risk groups	51	
• Management	59	
Patients and methods 63		
Results 68		
Discussion 81		
References 92		
Summary 111		
Arabic summary		

LIST OF FIGURES

Fig .No.	Figure title	Page No.
1	Shows Testes (single testis)	1
2	Identify the capsule and the connective tissue septa extending from it. Identify lobules, convoluted seminiferous tubules and clusters of interstitial cells.	3
3	Shows the Convoluted Seminiferous Tubules	4
4	Shows several Sertoli cells, and also demonstrates their relationship to the wall of the tubule and to other cells in the seminiferous epithelium.	5
5	Shows histology of Spermatogonia	7
6	Shows spermatogenesis	8
<i>V</i>	Shows the mature human spermatozoa	9
8	Shows located in the interstitial tissue between the convoluted seminiferous tubules	11
9	Shows Histology of leydig cells	12
10	Shows Excurrent Ducts: Rete Testis, Epididymis, and Ductus Deferens	13

Fig .No.	Figure title	Page No.
11	Shows sections of the epididymis or testes sections. Note that ductuli efferentes are located mainly in the head of the epididymis, whereas the ductus epididymidis forms the body and tail of the epididymis.	14
12	Shows histology of Vas deferens	15
13	Shows Intratubular Germ Cell Neoplasia	16
14	Shows microscopic appearance of intratubular germ cell neoplasia in routinely stained section.	19
15	Shows Seminiferous tubules with intratubular germ cell neoplasia showing large cells with clear cytoplasm, enlarged vesicular nuclei, and prominent nucleoli.	20
16	Shows another case of intratubular germ cell neoplasia occurring in cryptorchid testis.	20
17	Shows This photomicrograph from an undescended testis shows intratubular germ cell neoplasia with testicular microliths.	21

Fig .No.	Figure title	Page No.
18	Histological and ultrasonical appearance of carcinoma in situ (CIS)	24
19	Shows representative example of: actual G-banding and schematic of a normal chromosome 12 (left within panel) and an isochromosome 12p (i(12p)) (right within panel); the fluorescent in situ hybridization pattern with a probe specific for the centromeric region of chromosome 12 (red) and the p-arm (green).	26
20	Shows Preinvasive carcinoma in situ (CIS). Hematoxyllin-eosin staining showing general features of the histologic pattern	30
21	Shows PAS stain of intratubular germ cell neoplasia showing abundant intracytoplasmic glycogen in the neoplastic cells	31
22	Shows CIS cells visualised immunohistochemically with an anti-PLAP antibody	33

Fig .No.	Figure title	Page No.
23	Shows Immunoreactivity for Placental Alkaline Phosphatase (PLAP) with cytoplasmic membrane staining and some cytoplasmic staining is a quite sensitive and specific test for ITGCN.	35
24-A	Shows optimal OCT3/4 staining of the intratubular germ cell neoplasia. The neoplastic cells show a strong distinct nuclear staining with no background reaction	40
24-B	Shows insufficient OCT3/4 staining of the intratubular germ cell neoplasia. Only scattered neoplastic cells show a weak nuclear staining	40
25	Shows Testicular microlithiasis by ultrasound	45

LIST OF TABLES

No.	Table title	Page No.
1	WHO criteria for the diagnosis of CIS cells	23
2	Showing the distribution of the age of the patients	67
3	Showing the distribution of duration of infertility	68
4	Showing the distribution of clinical presentation	69
5	Showing the distribution of fresh mount	70
6	This table shows the distribution of histopathological examination	72
7	This table shows the distribution of comparison of pathology and fresh mount of patients	73
8	Showing the distribution of FSH hormone level	74
9	Showing the distribution of ITGCN	74
10	Showing the distribution of clinical presentation of ITGCN pts.	75
11	Showing the distribution of Fresh Mount of ITGCN pts	75
12	Showing the distribution of pathology of ITGCN pts	75

List of Abbreviations

Ag nor	Argyrophilic nucleolar organiser region
AP-2γ	Activator protein -2 gamma
Chk2	Checkpoint kinase
CDK	Cyclin-dependent kinase
CEACAM 1	Carcinoembryonic antigen - related cell adhesion
	molecule -1
CIS	Carcinoma in situ
DDR	DNA damage response
EC	Embryonal carcinoma
ESC	Embryonic stem cell
FCM	Flow cytometry
FISH	Fluorescence in situ hybridization
FSH	Follicle stimulating hormone
GCTs	Germ cell tumors
HLA	Human leucocyte antigen
HX-eosin	Hematoxylin. Eosin
ICSI	Intracytoplasmic sperm injection
IGF	Insulin growth factor
I (12p)	Isochromosome 12p
ITGCN	Intra tubular germ cell neoplasia
LM	low power microscope
LH	Luteinizing-hormone
NES1	Normal epithelial cell-specific 1
NSGCTs	Non seminomatous germ cell tumors
OCT 3/4	Octamer-3/4

PAS	Periodic acid schiff
PLAP	Placental alkaline phosphatase
RBM	RNA-binding motif
SCO	Sertoli cell only
TDS	Testicular dysgenesis syndrome
TESE	Testicular sperm extraction
TGCT	Testicular germ cell tumours
TM	Tumor microlithiasis
WHO	World health organization

Abstract

Intratubular germ cell neoplasia (ITGCN), is a pre-invasive precursor of testicular germ cell tumors, an increased risk of harbouring (ITGCN) has been reported in men with a history of cryptorchidism, in contralateral testes of men previously treated for unilateral germ cell tumor, in intersex patients, in men with extragonadal germ cell tumor and in infertile men so a testicular biopsy is necessary to diagnose (ITGCN). Aim of the work: The aim of this retrospective study is to find the prevalence of ITGCN among testicular biopsies from azoospermic patients attending Kasr EL-Ainy Hospital between the years 2005 - 2007. MATERIAL AND METHODS: This retrospective study was done from patients underwent testicular biopsies on Kasr El-Ainy hospital for period (2005 - 2007), for each patient we recorded the age, duration of infertility, FSH level, fresh mount and pathology, every slide was examined under light microscopy 40x magnification for histological evaluation and the suspected cases of (ITGCN) according to WHO was recorded and there paraffin sections were treated with placental alkaline phosphatase (PLAP) stain, a classic immunohistochemical marker of ITGCN for evaluation. RESULTS: Among 415 patients, (ITGCN) examination was confirmed in 4 patients which is about (1%) of cases. CONCLUSION: for all patients at high risk of (ITGCN), PLAP stain should be routinely done to the testicular biopsy, this would allow earlier detection and proper management of such serious life threatening condition and all azoospermic patients undergoing **TESE** should be examined histopathologically and suspicious cases of CIS (ITGCN) should be evaluated by PLAP stain.

Key words:

- ITGCN
- TESE
- PLAP

INTRODUCTION

Intratubular germ cell neoplasia (ITGCN) is the uniform precursor of testicular germ cell tumors (GCTs), except for spermatocytic seminomas in elderly men and yolk sac tumors and mature teratomas in infants. There is some variability in the terminology of ITGCN; it has also been called carcinoma in situ (CIS), or testicular intraepithelial neoplasia. However, this is not an epithelial lesion, and thus the latter terms are not preferred **Huyghe et al.**, (2005)

ITGCN can be found in testicular tissue adjacent to GCTs in approximately 90 percent of adult cases **Jacobsen et al.**, (1999), and is found in all groups at risk for testicular cancer, including men with cryptorchid testes, prior testicular cancer and individuals with abnormal sexual differentiation **Parkinson et al.**, (2003).

The prevalence of ITGCN in all groups at risk for testicular cancer and other populations mirrors that of GCTs, in the absence of in vitro or animal studies, has contributed significantly to the theory that ITGCN is the precursor of GCTs **Linke et al.**, (2005).

Testicular ITGCN may be diagnosed in several different clinical scenarios:

- In the contralateral testis of a man with a GCT.
- In the testis of a man who presents with an extragonadal GCT.
- In a cryptorchid testis (regardless of orchidopexy) or in the normal contralateral testis.
- In the testes of infertile men.
- In dysgenetic gonads

A multitude of additional risk factors or undetermined relative importance have also been described, including testicular atrophy, microlithiasis, low birth weight, Down syndrome, and gestational estrogen excess **Rajpert et al.**, (2006).

The CIS cells can be detected in the adjacent parenchyma of most invasive tumors, and are more frequently associated with nonseminomatous germ cell tumors (NSGCTs) than with seminomas **Oosterhuis et al.**, (2003).

Aim of the work

The aim of this retrospective study is to find the prevalence of ITGCN among testicular biopsies from azoospermic patients attending Kasr EL-Ainy Hospital between the years 2005 - 2007.

<u>Study design:</u> Retrospective study

Normal histology of the testis

The testes of most mammals are located extra-abdominally in the scrotum. This is actually a temperature controlling device. In most mammals spermatogenesis proceeds evenly and smoothly at an optimal temperature slightly below the core body level. The role of the scrotum is to maintain that temperature.

When the ambient temperature drops, the testes are pulled up by muscular action towards the warmth of the body cavity, and when it rises, the muscle relax, allowing the testes to descend and remain cool. Almost all terrestrial mammals have extra-abdominal testes **Handelsraan et al.**, (1985).

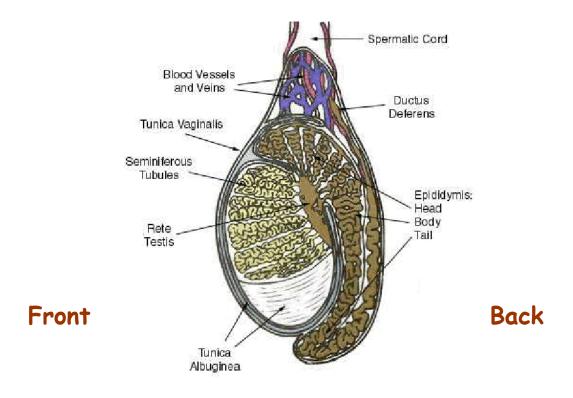


Figure (1): Shows Testes (single testis) Scott, (2000).