Imaging of Primary Ureteropelvic Junction Obstruction

Thesis

Submitted for Partial Fulfillment of MD degree in Radiodiagnosis

Presented by:

Sally Yehia Shokralla

(M.B.B.Ch; M.Sc in Radiodiagnosis)

Supervised by:

Prof. Sanaa Abdel-Moneim El-Tatawy

Professor of Radiodiagnosis Faculty of Medicine, Cairo University

Prof. Sameh Abdel-Aziz Zaky Hanna

Professor of Radiodiagnosis Faculty of Medicine, Cairo University

Prof. Hesham Abdel-Hameed Badawy

Professor of Urology Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2010

Acknowledgement

I would like to extend my deep gratitude and cordial thanks to everyone who helped, encouraged and believed in the value of this piece of work.

Foremost, I would like to thank prof. Dr. Sanaa Abdel-Moneim El-Tatawy, Professor of Radiodiagnosis, Cairo University, for her encouragement, support and her extreme efforts in making this study possible. I am greatly honored and pleased to have had the opportunity to learn from her creative advice and expanded experience.

I also, deeply thank prof. Dr. Sameh Abdel-Aziz Hanna, professor of Radiodiagnosis, Cairo University, for being a patient, respectful and knowledgeable teacher, & for his cooperative attitude. Without his valuable instructions and advice, this work would not have appeared in this form. It is a great honour to work under his guidance and close supervision.

Also I extend my deep thanks to prof. Dr. Hesham Abdel-Hamid Badawy, professor of Urology, Cairo University, for his great help and effort.

I would like to extend my deep gratitude to **Prof. Dr. Ahmed Samy**, Head of Radiology department, Cairo University for his kindness & support.

My gratitude and thanks are extended to all staff members and colleagues of the Radiology & Urology Departments, for their help and cooperation.

I am also offering my warmest thanks to my family and my friends for their positive attitude, generosity & moral support.

Abstract

Gray-scale ultrasound and Doppler flow study were done for all patients while CT urography and CT angiography for most of them. MRU, MRA and/or radionuclide scintigraphy (RNS) studies were performed for some of the patients.

Key word

Ureteropelvic

Radiodiagnosis

Obstruction

RNS

List of Contents

Content	Page
Acknowledgement	
List of abbreviations	
List of figures	
List of tables	
Introduction and Aim of Work	1
Review of Literature	3
Anatomy of kidney and ureter	3
Pathophysiology of Ureteropelvic Junction Obstruction	11
Physiology of the ureteropelvic junction	11
Background of ureteropelvic junction obstruction	
"UPJO"	13
Etiology of Ureteropelvic Junction Obstruction	16
Pathology of Hydronephrosis due to UPJ Obstruction	21
Diagnosis of Primary UPJO	23
imaging of Crossing Vessels at the Ureteropelvic	
Junction Region	<i>5</i> 2
Treatment of Ureteropelvic Junction Obstruction	60
Patients and Methods	73
Results	82
Case Presentation	103
Díscussíon	145
Summary and Conclusion	159

Content Page References 161 Arabic Summary

List of Abbreviations

+ve positive

-ve negative

% percentage

& and

2D two dimensional

3D three dimensional

AP anteroposterior

APD anteroposterior diameter

CDI color Doppler sonographic imaging

cm centimeter

Cr creatinine

CT Computed Tomography

CTA Computed Tomography Angiography

CTU Computed Tomography Urography

dMRI dynamic Magnetic resonance imaging

DSA digital subtraction angiography

DTPA diethylenetriamine pentaacetic acid

EDV End diastolic velocity

EF ejection fraction

EPI echoplanar imaging

et al. and colleagues

Fig. figure

FOV Field of view

Gd-DTPA gadolinium diethylenetriamine pentaacetic acid

GFR glomerular filtration rate

GRE gradient recalled echo

hr hour

HU Hounsfield unit

IV intravenous

IVP intravenous pyelography

IVU intravenous urography

Kg kilogram

MAG3 mercaptoacetyltriglycine

MCDK multicystic dysplastic kidney

MDCT multidetector Computed Tomography

MIP maximum intensity projection

mg milligram ml milliliter

mm millimeter

MHz Mega Hertz

MPR Multiplanar Reformate

MRA Magnetic resonance angiography

MRI Magnetic resonance imaging

MRU Magnetic resonance urography

ms milliseconds

MSCT multislice Computed Tomography

MTT Mean transit time

No. number

PC phase contrast

PCS pelvicalyceal system

PSV peak systolic velocity

PUJ pelviureteric junction

PUJO pelviureteric junction obstruction

RARE rapid acquisition with relaxation enhancement

RI Resistivity index

RNS radionuclide scintigraphy

sCr serum creatinine

sec second

SFU Society of Fetal Urology

STIR short time inversion recovery

T Tesla

T 1/2 half time of the elimination phase

T1WI T1 weighted image

T2WI T2 weighted image

Tc technetium

TE time of echo

TR time of repetition

UPJ ureteropelvic junction

UPJO ureteropelvic junction obstructio

US ultrasound

UTI urinary tract infection

VATER vertebral, anorectal, tracheal, esophageal, and

renal abnormalities

vs versus

VUR vesicoureteric reflux

List of Figures

Title	Page
Fig.1: The nephron and relative location of its components.	4
Fig.2: Gross anatomy of the kidney.	5
Fig.3: Blood supply of the kidney.	7
Fig.4: Drawings show the vascular anatomy of the renal hilum and	15
the anterior and posterior segmental divisions of renal perfusion.	
Fig.5: Grades of hydronephrosis.	22
Fig.6: Anteroposterior intravenous pyelogram of the abdomen	27
showing right UPJ obstruction.	
Fig.7: Retrograde pyelogram demonstrating ureteropelvic junction	28
obstruction secondary to crossing vessels.	
Fig.8: CT urography and CT angiography in different viewing planes	37
showing UPJO in a 24-year-old man.	
Fig.9: Hilar clock-face view. Oblique sagittal image obtained at the	38
right renal hilum shows the radial distribution of the renal arteries and	
veins.	
Fig.10: Dynamic MRU and retrograde pyelography in 5-year-old boy	42
with recurrent severe abdominal pain showing left UPJO due to	
crossing vessel.	
Fig.11: Transverse and Longitudinal U/S views of the right kidney	44
demonstrate hydronephrosis from a ureteropelvic junction obstruction.	
Fig.12: Posteroanterior renal scan in a patient with right ureteropelvic	49
junction obstruction.	
Fig.13: IVU shows left hydronephrosis due to anterior crossing vein	54
associated with UPJ obstruction in a 31-year-old man.	
Fig.14: UPJO in a 54-year-old man.	55
Fig.15: Posterior crossing vein associated with UPJ obstruction in a	56
60-year-old man.	

Title	Page
Fig.16: Intraluminal sonographic image of the ureteropelvic junction	57
(UPJ) defining an associated large posterior crossing vessel.	
Fig.17: Dynamic MR series acquired during arterial phase shows	59
aberrant lower pole artery arising from aorta and crossing mildly	
dilated renal pelvis.	
Fig.18: Anderson-Hynes pyeloplasty.	62
Fig.19: Foley Y-V plasty.	65
Fig.20: Clup-DeWeerd spiral flap.	66
Fig.21: Scardino-Prince vertical flap.	66
Fig.22: Ureterocalicostomy.	67
Fig.23: Distribution of patients according to gender.	82
Fig.24: Distribution of the clinical presentation in the study patients.	83
Fig.25: Patients' kidney functions.	84
Fig.26: An illustration showing different imaging modalities and the	86
number of patients examined by each.	
Fig.27: Side of UPJO among study patients.	87
Fig.28: Sensitivity of different imaging modalities to detect renal	90
obstruction.	
Fig.29: Sensitivity of different imaging modalities in assessment of	91
hydronephrosis.	
Fig.30: The incidence of crossing vessels in different age groups of	94
our study.	
Fig.31: The number of patients with and without crossing vessels in	96
relation to different symptoms.	
Fig.32: The incidence of crossing vessels in relation to different	97
symptoms.	
Fig.33: Anatomical site of crossing vessels in relation to UPJ.	99
Fig.34: Types of crossing vessels.	100

Title	Page
Fig. 35 (a&b): US showing moderate right hydronephrosis with	104
ballooned right renal pelvis and non visualized proximal right ureter.	
Fig. 36 (a&b): Doppler US of the right kidney showing intrarenal RI:	104
0.72. A renal vein is seen passing posterior to the UPJ.	
Fig. 37 (a to d): Enhanced CT scan of the abdomen (axial cuts)	105
showing moderate right hydronephrosis. crossing vessels seen	
posterior to the right UPJ.	
Fig. 38 (a&b): Coronal MIP CTA showing early branching renal artery	106
and vein crossing posterior to the right UPJ.	
Fig. 39: VR CTA showing early branching renal artery and vein	106
crossing at the region of the right UPJ.	
Fig. 40 (a to c): Enhanced CT scan of the abdomen (axial cuts)	108
showing the main right renal artery and an accessory right renal artery	
crossing anterior to the UPJ.	
Fig. 41 (a to d): Coronal MIP CTA showing an accessory renal artery	109
crossing anterior to the right UPJ.	
Fig. 42 (a to c): CTA (Snap shot) showing a right lower polar	110
accessory renal artery.	
Fig. 43: IVU (late excretory phase) showing malrotated left kidney	113
and marked left hydronephrosis. Non-visualized left ureter till the end	
of the examination.	
Fig. 44 (a&b): US and color Doppler images showing marked left	113
hydronephrosis with thinned out renal parenchyma. Malrotated left	
kidney. Intrarenal RI: 0.79	
Fig. 45: CTU showing malrotated left kidney, left hydronephrosis,	114
non-visualized left ureter.	
Fig. 46 (a&b): VR CTA showing left lower polar accessory renal	114
artery.	

Title	Page
Fig. 47 (a to d): CTU showing bilateral UPJ obstruction. Right	116
proximal ureteric kink (arrow).	
Fig. 48 (a to d): CTU (Sagittal plane) showing right UPJ obstruction	117
due to proximal ureteric kink (arrow).	
Fig. 49 (a to f): Enhanced CT scan of the abdomen (axial cuts)	119
showing moderate right hydronephrosis.	
Fig. 50 (a to f): Coronal MIP reconstruction of CTA showing an	120
accessory renal artery crossing anterior to the right UPJ. Right lower	
calyceal stone.	
Fig. 51 (a&b): Bilateral ballooned renal pelves more on the left side.	122
Non visualized both ureters. Suspected bilateral UPJ obstruction.	
Fig. 52 (a to f): Enhanced CT (axial cuts), late excretory phase, done	123
while the patient in prone position, showing normal filling of both	
ureters.	
Fig. 53 (a&b): CTU showing bilateral extrarenal pelves and normal	124
filling of both ureters.	
Fig. 54 (a&b): VR CTA showing normal anatomy of both renal	125
arteries with no accessory renal vessels.	
Fig. 55 (a to d): Enhanced CT (axial cuts), nephrographic phase,	127
showing thinned out distorted parenchyma of the right kidney with	
dilatation of its collecting system.	
Fig. 56 (a&b): Coronal MIP CT (nephrographic phase) showing	128
thinned out distorted parenchyma of the right kidney with dilated	
pelvicalyceal system.	
Fig. 57 (a to d): Enhanced CT (axial cuts), (excretory phase) showing	129
thinned out distorted parenchyma of the right kidney with dilated its	
collecting system.	
Fig. 58: Coronal MIP CTU showing thinned out distorted parenchyma	130
of right kidney with dilated renal pelvis. Non-visualized right ureter.	

Title	Page
Fig. 59: CTU showing moderate right hydronephrosis, ballooned right	132
renal pelvis, and non visualized right ureter.	
Fig. 60 (a&b): Enhanced CT scan of the abdomen (axial cuts)	133
showing the origins of both main renal arteries.	
Fig. 61 (a to d): Enhanced CT scan of the abdomen (axial cuts)	133
showing the origins of accessory renal arteries bilaterally. Multiple	
right renal stones are seen at the renal pelvis and lower calyx.	
Fig. 62 (a&b): Coronal MIP CTA showing bilateral accessory renal	134
arteries, the right one is seen crossing anterior to the right UPJ and	
associated with an accessory renal vein.	
Fig. 63 (a&b): VR CTA showing bilateral accessory renal arteries, the	134
right one is seen associated with an accessory renal vein.	
Fig. 64 (a&b): US showing marked dilatation of the left renal pelvis	136
with thinned out left renal parenchyma.	
Fig. 65 (a&b): Doppler US showing intrarenal RI = 0.88.	136
Fig. 66: MRU showing ballooned left renal pelvis with non-visualized	137
left ureter.	
Fig. 67 (a to c): Enhanced MRA showing a left accessory renal artery	138
passing anterior to the left UPJ (arrow).	
Fig. 68: PUT showing right renal radio-opaque calcular shadows and	141
soft tissue tumefaction at the left hypochondrial region.	
Fig. 69 (a&b): (a) US showing marked left hydronephrosis with	141
ballooned renal pelvis. (b) Doppler US showing intrarenal RI of the left	
kidney: 0.75.	
Fig. 70 (a&b): IVU, (a)prone and (b)supine projections, showing	142
moderate right hydronephrosis and marked left hydronephrosis. Non-	
visualized left ureter till the end of the examination.	

Title	Page
Fig. 71 (a&b): (a) Coronal MIP and (b) VR CTU showing moderate	143
right and marked left hydronephrosis with visualized proximal 1.5 cm of the left ureter while the rest of the left ureter distally is not	
visualized.	
Fig. 72 (a to d): Coronal MIP CTA showing splayed branching left	144
renal artery at the renal hilum with the dilated pelvis in between. The	
lower division artery is above the point of calibre transition.	

List of Tables

Title	Page
Table 1: showing side of UPJ obstruction.	87
Table 2: showing abnormalities associated with UPJO.	88
Table 3: Comparative study for the sensitivity of different imaging	89
modalities in our patients with renal obstruction.	
Table 4: Colour Doppler study findings in the evaluation of renal	92
obstruction.	
Table 5: The incidence of crossing vessels by age.	94
Table 6: The incidence of crossing vessels by symptoms.	95
Table 7: The anatomic locations of crossing vessels.	98
Table 8: Accuracy of CTA and Doppler US in detection of crossing	101
vessels.	