PRODUCTION AND EVALUATION OF SOME SPECIAL FOOD FORMULAS

By

DOAA BAYOUMI EL-SAYED BAYOUMI

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2001 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

PRODUCTION AND EVALUATION OF SOME SPECIAL FOOD FORMULAS

By

DOAA BAYOUMI EL-SAYED BAYOUMI

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2001 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2007

This thesis	s for Ph.D. degree has been approved by:
I	Mohamed R. Abdel-Aal Prof. of Food Science and Technology, Faculty of Agriculture, Assiut University
I	Ahmed Y. Gibriel Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University
I	Yosry A. Abd-Eldaim Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University
I	Ramadan M. Mahmoud Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Date of Examination: 9 / 8 / 2010

PRODUCTION AND EVALUATION OF SOME SPECIAL FOOD FORMULAS

By

DOAA BAYOUMI EL-SAYED BAYOUMI

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2001 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2007

Under the supervision of:

Prof. Dr. Ramadan M. Mahmoud

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Yosry A. Abd-Eldaim

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Prof. Dr. Foad A. A. El-Sherefa

Head of Research of Food Science and Technology, Department of Special Food and Nutrition, Food Technology Research Institute, Agricultural Research Center

ABSTRACT

Doaa Bayoumi El-Sayed Bayoumi: Production and Evaluation of Some Special Food Formulas. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2010.

Breast-feeding is the golden standard for infant feeding. However, the majority of a few months old infants are fed with a second choice infant feeding, complementary formula. Prebiotics have the potential to promote immediate and long-term effects on the health and well-being of infants. Preparation and evaluation of four complementary weaning food formulas containing prebiotic ingredients, mainly inulin were studied. Formula 1 contained 20% Globe artichoke; Formula 2 contained 20% Jerusalem artichoke; Formula 3 contained 10% Globe artichoke and 10% Jerusalem artichoke; and Formula 4 contained 10% Inulin powder extracted from Jerusalem artichoke. The selected formulations were nutritionally evaluated comparing with Cerelac. Inulin content was determined using HPLC methodology; Jerusalem artichoke tuber had 65.74 g/100g Inulin; whereas, globe artichoke bracts had 20.41 g/100g Inulin on dry weight. The highest amounts of Inulin was found in formula 2 contained (10.35 g/100g dry weight); while Inulin content in formula 1 and 3 were (4.18 and 8.72 g/100g dry weight), respectively. Inulin powder extracted from Jerusalem artichoke was added to formula 4 which was (10.06 g/100g dry weight). The results indicated also, that all mixtures were rich in protein, and carbohydrate. Also, all mixtures had compositions and properties comparable to those of Cerelac and the levels recommended by Egyptian standard hence have a good potential for use as weaning foods.

Inulin may have potential benefits, since they exhibit many soluble dietary fibre-like properties. Our present objective was to study the effect of extracted Inulin from Jerusalem artichoke and Globe artichoke on bioavailability of some minerals (Fe, Ca, Zn and Mg). As

expected, inulin intake increased minerals absorption in all rat groups. Absorption of (Fe, Ca, Zn and Mg) was significantly higher in the groups fed on Inulin extracted from Jerusalem than groups fed on the same levels of Globe artichoke. However, inulin had a numerically greater effect on minerals absorption in rats group fed on diet contained 6% Inulin extracted from Jerusalem artichoke than rats groups fed on diet contained 6% Inulin extracted from Globe artichoke. The extent of the stimulatory effect of inulin on absorption of minerals may differ according to source of Inulin. In conclusion, Inulin extracted from Jerusalem artichoke led to more increase on bioavailability of studied minerals than Inulin extracted from Globe artichoke.

Key Words: Functional food, Prebiotic, Inulin, minerals bioavailability, Weaning foods formulas.

ACKNOWLEDGMENT

First and forever feel I always indebted to **ALLAH** the most beneficent and merciful.

The author wishes to express her deepest gratitude and sincere appreciation to **Prof. Dr. Ramadan Mohamed Mahmoud**, professor of Food Science, faculty of Agriculture, Ain Shams University, for his supervision, valuable guidance, encouragement, helpful suggestion, continuous support throughout the course of the present investigation and help during the writing of thesis.

Great thanks are also extended to **Prof. Dr. Yosry Ahmed Abd-Eldaim**, professor of Food Science, faculty of Agriculture, Ain Shams University, for his supervision, constrictive criticism and advice throughout this work.

Special thanks are extended to **Prof. Dr. Foad Aly Abd El-Geleil EL-Sherefa**, professor of Food Science and Technology, special food and nutrition department, Food Technology Research Institute, Agriculture Research Center, for the constant, encouragement, helpful, useful advice and assistance to fulfill this research.

I should also thank the rest of the Department of Food Science, Fac. of Agric., Ain Shams University for their contribution in my graduate education and enrichment.

I Dedicate this thesis to my family who blessed My with their kind and love.

I wish to express my thanks to the **Academy of Scientific Research and Technology** for its support in preparation of the thesis.

Finally, I want to express my acknowledgment to all staff members, the colleagues and workers in the Food Technology Research Institute, Agricultural Research Center.

CONTENTS

NO.		Page
	LIST OF TABLES	IV
	LIST OF APPREVIATION	X
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	6
2.1	Health and nutrition	6
2.2	Functional foods	6
2.3	Prebiotics	8
2.3.1	Types of prebiotics	9
2.3.2	General aspects of prebiotics.	10
2.3.3	Structure–function relationships	13
2.3.4	Monosaccharide composition	13
2.3.5	Glycosidic linkage	13
2.3.6	Molecular weight.	13
2.3.7	Increased molecular weight	14
2.4	Potential food applications	14
2.5	Health-related aspects	15
2.6	Nature of Inulin	16
2.6.1	Chemical aspects of Inulin	17
2.6.2	Distribution of inulin	19
2.6.3	Digestion and Fermentation of Inulin	22
2.6.4	Estimated Daily Intake of inulin and FOS among the	
	different population	23
2.7	Physiological properties of non digestible	
	oligosaccharides	24
2.7.1	A significant modification of the colonic microflora	25
2.7.2	A decrease of pH in the colon and consequently	26
2.7.3	Nutrient production	26
2.7.4	An increase in fecal dry weight excretion	27

2.7.5	Constipation relief due to fecal bulking and possibly	
	effects on intestinal motility	27
2.7.6	Inhibition of diarrhea	27
2.7.7	A protective effect against infection in the gastrointestinal	
	and respiratory	28
2.7.8	A benefit effect on the carbohydrates and lipids	
	metabolism	29
2.7.9	A reduction of cancer risk	30
2.7.10	An increase in absorption of different minerals	32
2.8	Mechanism of enhancer	37
2.9	Utilization of Inulin in the food industry	39
2.10	Iron Properties and Functions in infants	43
2.11	Calcium Properties and Functions in infants	45
2.12	Zinc Properties and Functions in infants	46
2.13	Magnesium Properties and Functions in infants	48
2.14	Weaning period	49
2.15	Infant feeding	49
2.15.1	Breast-feeding	50
2.15.2	Why breast is best?	51
2.15.3	Infant formula	52
2.16	Recent Advances in the Development of Infant Formulas:	
	Mimicking the Effects of Breast Feeding	53
2.17	Prebiotic formulas in infant nutrition and health benefits	55
2.18	Prebiotics safety and tolerance infant formulas	62
2.19	Egyptian Specifications for Standardization and Quality	
	Control of Baby Foods	65
2.20	Chemical composition of raw materials	66
2.20.1	Globe artichoke	66
2.20.2	Jerusalem artichoke	67
3.	MATERIALS AND METHODS	69
3.1	Materials	69

3.2	Methods
3.2.1	Part A (Production and evaluation of some functional
	weaning food formulas)69
3.2.1.1	Preparation of the ingredients
3.2.1.2	Extraction of Inulin
3.2.1.3	Preparation of weaning food formulas
3.2.1.4	Preparation of weaning food meal
3.2.1.5	Chemical analysis
3.2.1.6	Determination of minerals
3.2.1.7	Determination of amino acids
3.2.1.7.1	Determination of tryptophan
3.2.1.8	Amino acid score
3.2.1.9	Determination of Inulin by HPLC
3.2.1.10	Biological evaluation
3.2.1.10.1	Animal Experiments
3.2.1.10.2	Protein Efficiency Ratio (PER)
3.2.1.10.3	Net protein utilization (NPU)
3.2.1.10.4	Digestibility coefficient (DC)
3.2.1.10.5	Biological value (BV)
3.2.1.11	Microbiological evaluation
3.2.1.11.1	Determination of total bacterial count (TBC)
3.2.1.11.2	Detection of yeast and moulds
3.2.1.11.3	Detection of Coliform group
3.2.1.12	Organoleptic evaluation
3.2.2	Part B: (Effect of inulin on some minerals
	bioavailability)79
3.2.2.1	Animals and experimental diets
3.2.2.2	Minerals content of experimental diets 80
3.2.2.3	Fecal weight and moisture
3.2.2.4	Minerals in faeces and urinary
3.2.2.5	Apparent minerals absorption, balance and retention 81

3.2.2.6	Blood measurements
3.2.2.6.1	Hemoglobin determination
3.2.2.6.2	Hematocrit determination
3.2.2.6.3	Minerals in serum
3.2.2.7	Minerals in bone
3.2.2.8	Length and thickness of rats' femur
3.2.2.9	Bone breaking force
3.2.2.10	Organs weight and minerals content
3.2.2.11	Statistical analysis
4.	RESULTS AND DISCUSSION
4.A	Production and evaluation of some functional weaning
	food formulas
4.A.1	Proximate composition of used materials
4.A.2	Chemical composition of prepared weaning food
	formulas
4.A.3	Minerals content of weaning food formulas
4.A.4	Amino acid content of prepared weaning food formulas
4.A.5	Chemical protein score of different weaning food
	formulas
4.A.6	Biological assay of different prepared weaning food
	formulas
4.A.6.1	Nutritive values of the different prepared weaning food
	formulas1
4.A.6.1.1	Weight gain in body rats
4.A.6.1.2	Protein efficiency ratio
4.A.6.1.3	Net Protein Utilization (NPU)
4.A.6.1.4	Digestibility Coefficient (DC)
4.A.6.1.5	Biological Value (BV)
4.A.7	Microbiological evaluation of prepared weaning food
	formulas1
4.A.8	Organoleptic evaluation of prepared weaning food

	formulas
4.B	Effect of inulin on some minerals bioavailability
4.B.1	Jerusalem artichoke Inulin
4.B.1.1	Minerals content in experimental diets
4.B.1.2	Growth rate and feed efficiency ratio
4.B.1.3	Inulin and food intake
4.B.1.4	Iron (Fe) bioavailability
4.B.1.4.1	Effects on absorption, balance and retention of Iron
4.B.1.4.2	Hemoglobin and hematocrit
4.B.1.4.3	Serum iron concentration
4.B.1.4.4	Iron concentration in some organs
4.B.1.5	Calcium (Ca) bioavailability
4.B.1.5.1	Effects on absorption, balance and retention of Calcium
4.B.1.5.2	Serum Calcium concentration
4.B.1.5.3	Calcium femur, length, thickness and breaking force
4.B.1.6	Zinc (Zn) bioavailability
4.B.1.6.1	Effects on absorption, balance and retention of Zinc
4.B.1.6.2	Serum Zinc concentration
4.B.1.6.3	Dry femur weight and its zinc content
4.B.1.6.4	Zinc concentration in some organs
4.B.1.7	Magnesium (Mg) bioavailability
4.B.1.7.1	Effects on absorption, balance and retention of
	Magnesium
4.B.1.7.2	Serum Magnesium concentration
4.B.1.7.3	Dry femur weight and its Magnesium content
4.B.1.7.4	Magnesium concentration in some organs
4.B.1.8	Organs weight
4.B.1.9	Fecal weight (fresh and dry) and moisture (%)
4.B.2	Globe artichoke Inulin
4.B.2.1	Minerals content in experimental diets
4.B.2.2	Growth rate and feed efficiency ratio

4.B.2.3	Inulin and food intake
4.B.2.4	Iron (Fe) bioavailability
4.B.2.4.1	Effects on absorption, balance and retention of Iron 14
4.B.2.4.2	Hemoglobin and hematocrit
4.B.2.4.3	Serum iron concentration
4.B.2.4.4	Iron concentration in some organs
4.B.2.5	Calcium (Ca) bioavailability 14
4.B.2.5.1	Effects on absorption, balance and retention of Calcium 14
4.B.2.5.2	Serum Calcium concentration
4.B.2.5.3	Calcium femur, length, thickness and breaking force 15
4.B.2.6	Zinc (Zn) bioavailability
4.B.2.6.1	Absorption, balance and retention of Zinc
4.B.2.6.2	Serum Zinc concentration
4.B.2.6.3	Dry femur weight and its zinc content
4.B.2.6.4	Zinc concentration in some organs
4.B.2.7	Magnesium (Mg) bioavailability 15
4.B.2.7.1	Effects on absorption, balance and retention of
	Magnesium. 15
4.B.2.7.2	Serum Magnesium concentration
4.B.2.7.3	Dry femur weight and its Magnesium content 15
4.B.2.7.4	Magnesium concentration in some organs
4.B.2.8	Organs weight
4.B.2.9	Fecal weight (fresh and dry) and moisture (%)
5.	SAMMARY AND CONCLUSION 16
6.	REFERENCES
	ARABIC SUMMARY

LIST OF ABBREVIATIONS

% Percent μg Microgram

A. A. S. Amino acid score

A. O. A. C. Official methods of Analysis

BV Biological value

Ca Calcium
cm Centimeter
conc. Concentration

DC Digestibility coefficient

DP_{av} Degree of polymerization average

EAAs Essential amino acids

FAO Food and agriculture organization

Fe Iron

G. A. Globe artichoke

g Gram

HP high polymer

HPLC High performance liquid chromatography

hr Hour IN Inulin

J.A. Jerusalem artichoke

Kilocalorie Kcal Kilogram Kg Magnesium Mg Milligram mg Minute min Milliliter ml Nanometer nm N Neiotn

NPU Net protein utilization NRC National Research Council

°C Degree centigrade PER Protein efficiency ratio

Sc-FOS short-chain fructooligosaccharides

sec. Second UNU UNICEF

WHO World health organization

Wk Week Zn Zinc

LIST OF TABLES

NO.	
2.1	Inulin content and chain length of miscellaneous plants
2.2	Inulin content in plants that are commonly used for human
	nutrition
2.3	Mean daily intakes of inulin and FOS in diets of Americans
3.1	Composition of the weaning food formulas
3.2	Constituent of (Cerelac) commercial weaning formula in
	Egypt
3.3	Composition of the basal diet (g/100g)
3.4	The constituents of the experimental diets
3.5	Composition of the salt mixture
3.6	Composition of the vitamins mixture
3.7	Composition of the diets used for evaluation of bioavailability
	of minerals
3.8	Composition of the minerals and vitamins formula used in the
	diets
4.1	Chemical composition of raw materials used for preparation
	of weaning food formulas
4.2	Chemical composition (gm/100g dry wt.), energy value and
	inulin content of weaning food formulas
4.3	Minerals content (mg / 100 g) of prepared weaning food
	formulas
4.4	Essential amino acids content (gm / 100 gm protein) of
	prepared weaning food formulas
4.5	Protein score of the prepared weaning food formulas
	compared with the provisional amino acids pattern
4.6	Gain, loss in body weight, food intake and protein efficiency
	ratio of the experimental animals fed on the prepared diets
4.7	Net protein utilization (NPU), Digestibility coefficient (DC)
	and Biological Value (BV) of rats fed on prepared diets

4.8	Microbiological evaluation of prepared weaning food	
	compared to a commercial product	107
4.9	Mean values of organoleptic evaluation of prepared weaning	
	food formulas	109
4.10	Iron, calcium, zinc and magnesium content in prepared diets	
	containing Jerusalem artichoke Inulin	113
4.11	Effect of Jerusalem artichoke inulin on Gain of body weight,	
	food intake and Feed efficiency ratio in rats	115
4.12	Effect of Jerusalem artichoke inulin on Iron bioavailability in	
	rats	117
4.13	Effect of Jerusalem artichoke inulin on Iron concentration	
	(mg/gm d. w.) in some rat organs	122
4.14	Effect of Jerusalem artichoke inulin on calcium	
	bioavailability in rats	123
4.15	Effect of Jerusalem artichoke inulin on Zinc bioavailability in	
	rats	127
4.16	Effect of Jerusalem artichoke inulin on Zinc concentration	
	(mg/gm d. w.) in some rat organs	130
4.17	Effect of Jerusalem artichoke inulin on Magnesium	
	bioavailability in rats	132
4.18	Effect of Jerusalem artichoke inulin on Magnesium	
	concentration (mg/gm d.w.) in some rat organs	135
4.19	Effect of Jerusalem artichoke inulin on relative organs weight	
	of rats	137
4.20	Effect of Jerusalem artichoke inulin on Faecal weight (fresh	
	and dry) and faecal moisture (%)	138
4.21	Iron, calcium, zinc and magnesium content in prepared diets	
	containing Globe artichoke Inulin	140
4.22	Effect of Globe artichoke inulin on Gain of body weight, food	
	intake and Feed efficiency ratio in rats	142
4.23	Effect of Globe artichoke inulin on iron bioavailability in rats.	144