THE ROLE OF (POSITRON EMISSION TOMOGRAPHY/ COMPUTED TOMOGRAPHY) " PET/CT " IN ADRENAL MASSES

Essay

Submitted for Partial Fulfillment of Master Degree In Radiodiagnosis

By

Dr./ Hussein Abdelbary Abdelhafiz

M.B., B.Ch. (2005), Ain Shams University

Supervised by

Prof. Dr./Suzan Bahig Ali
Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr./ Mohamed Sobhy Hassan Lecturer of Radiodiagnosis – Faculty of medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2009

- Contents

	Subjects	Page
	Introduction	1-
	Aim of the work	4-
•	Anatomy of Adrenal Gland	5-
	PET/CT Radiological Anatomy of Adrenal	Gland16-
	Pathology of Different Adrenal Masses	22-
	Technique of PET/CT	34-
•	Clinical Manifestations and PET/CT Adrenal Masses	_
	Summary and Conclusion	80-
	References	84-
	Arabic Summary	90-

Acknowledgement

First of all, thanks to **Allah** who granted me the ability to perform this work.

I am deeply indebted to **Prof. Dr. Suzan Bahig Ali**, Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, under whose supervision this work was produced and to whom I would like to express my gratitude for her assistance and guidance throughout this work.

I would also like to express my grateful appreciation to **Dr. Mohamed Sobhy Hassan,** Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, for his valuable help throughout planning and completing this work.

Lastly I would like to thank my family and all my colleagues for their continuous support and advice.

Hussein Abdelbary

List of Abbreviations

ACTH	AdrenoCorticoTrophic Hormone
BGO	Bisthmus Germinate
FDG	FluoroDeoxyGlucose
FOV	
LSO	Lutetium Oxyorthesilicate
MEN	
NAI	Sodium Iodide
PET	Positron Emission Tomography
PET/CT	Positron
	Emission Tomography/ Computerized Tomography
PMT	Photomultiplier Tube
ROI	Region Of Interest
US	

List of tables

Table 1: Normal adrenal gland size for age	38-
Table 2: Common PET radioisotopes	43-
Table 3: Average adult PET and PET/CT scan times	45-
Table 4: Acquisition Protocol Considerations in PET, CT, and PET/CT	Whole-Body
Imaging	48-

List of figures

Figure 1: Normal anatomy6-
Figure 2: External appearance of adrenal7-
Figure 3: Arterial supply of the adrenals8-
Figure 4: Venous drainage of the adrenal gland9-
Figure 5: Section of a part of a suprarenal gland10-
Figure 6: Human, Zenker's fluid, H & E., 22 x11-
Figure 7: Suprarenal glands viewed from the front13-
Figure 8: Suprarenal glands viewed from behind13-
Figure 9: Relations of the suprarenal glands15-
Figure 10:Normal appearance17-
Figure 11: Normal Adrenals Shown by CT18-
Figure 12: This maximum intensity-projection image is the only case in which the readers
agreed that the adrenal gland could be seen on the PET-alone image review20-
Figure 13: visual scoring21-
Figure 14: Gross specimen of a cortical adenoma of the adrenal23-
Figure 15: An adenoma made up of compact clear cells is seen on the left hand side,
compressing residual, normal cortex on the right24-
Figure 16: This patient underwent left radical nephrectomy, adrenalectomy, distal
pancreatectomy and splenectomy for adrenal cortical carcinoma25-
Figure 17: This patient presented with Cushing's syndrome and hypertension. CT scan
revealed a 12.5 cm left adrenal Mass26-
Figure 18: This sharply circumscribed 3.5 cm pheochromocytoma presented in a 13 year old
boy with von Hippel-Lindau disease27-
Figure 19: The cells composing a pheochromocytoma are similar to the adrenal medulla
chromaffin cells28-
Figure 20: A 5.0 cm, well-circumscribed, firm, multinodular ganglioneuroma that arose in the
adrenal30-
Figure 21: This specimen represents a left adrenal mass removed from a 63 year old man 11
years after he underwent right radical nephrectomy for renal cell carcinom31-
Figure 22: It is a benign, tumor-like lesion consisting of mature adipose tissue with
hematopoietic elements arising in the adrenal32-
Figure 23: Positron–electron annihilation reaction36-
Figure 24: Pictorial representation of (A) a true coincidence, (B) a scatter event, and (C) a
random Coincidence37-

List of figures (cont.)

Figure 25: Uptake of FDG. FDG is a glucose analog that is taken up by metabolically active
cells by means of facilitated transport via glucose transporters (Glut) in the cell
membrane39-
Figure 26: Normal PET study. From right-to-left, the rotating images are a useful way to
survey lesions prior to reading the planar images on PET-CT40-
Figure 27: Photograph (side view) of a hybrid PET-CT scanner shows the PET (P) and CT
(C) components44-
Figure 28: Standard FDG-PET/CT imaging protocol46-
Figure 29: High-density metal artifacts, such as hip implants, cause streak artifacts on CT (A),
which may translate into tracer uptake patterns on corrected PET images (B)50-
Figure 30: Adrenal adenoma in a 63-year-old woman with a history of mucosa-associated
lymphoid tissue lymphoma56-
Figure 31: Adrenal adenoma in a 60-year-old man with non-small cell lung cancer57-
Figure 32: Myelolipoma in a 72-year-old woman with a history of metastatic endometrial
carcinoma. Axial and coronal CT, PET and fused PET-CT images show a left adrenal
mass58-
Figure 33: Metastatic disease in an 86-year-old man with metastatic melanoma and a history
of prostate cancer60-
Figure 34: Metastatic disease in a 62-year-old man with a history of melanoma62-
Figure 35: Metastatic adrenal nodule from renal cell carcinoma in a 61-year-old man62-
Figure 36: Example of PET-positive adrenal mass in 64-year-old man with gastric carcinoma
and 2.6-cm adrenal metastatic lesion63-
Figure 37: Metastatic adrenal mass from lung adenocarcinoma in a 52-year-old man64-
Figure 38: Adrenal adenoma in a 50-year-old man with lung adenocarcinoma65-
Figure 39: Lymphomatous adrenal gland involvement in a 23-year-old woman with Burkitt
lymphoma of the left breast. Axial $$ and coronal CT , PET and fused PET-CT images show a 2
x 1-cm mass in the right adrenal gland66-
Figure 40: Collision tumors in a 46-year-old man with a history of high-grade
leiomyosarcoma of the right spermatic cord. Axial and coronal unenhanced CT , PET and
fused PET-CT images show a well-circumscribed 25-mm mass in the superior portion of the
left adrenal gland67-
Figure 41: Pheochromocytoma in a 42-year-old man with hypertension. The patient had a
contraindication to MR imaging, and PET-CT was performed70-

List of figures (cont.)

Figure 42: A right adrenocortical carcinoma in a 65-year-old woman was found in a routine		
health checkup and was confirmed by simultaneous measurements of late-afternoon serum		
cortisol and ACTH levels71-		
Figure 43: False-positive adrenal adenoma at integrated PET-CT performed in a 63-year-old		
woman with lung adenocarcinoma72-		
Figure 44: Adrenal pheochromocytoma with increased FDG uptake at integrated PET-CT		
performed in a 33-year-old woman with multiple endocrine neoplasia type II A73-		
Figure 45: False-negative adrenal nodule at integrated PET-CT performed in a 59-year-old		
man with lung adenocarcinoma with a predominantly bronchioloalveolar carcinoma		
component74-		
Figure 46: False-negative metastatic adrenal nodule at integrated PET-CT performed in a 55-		
year-old man with hepatocellular carcinoma75-		
Figure 47: False-negative metastatic adrenal nodule at integrated PET-CT performed in a 58-		
year-old man with lung carcinoma75-		
Figure 48: Nonneoplastic hypermetabolic activity77-		

INTRODUCTION

Incidental adrenal masses are identified in approximately 5% of abdominal CT scans and in up to 8.7% of autopsies (Boland et al., 1998).

In patients without a known malignancy, most of these masses represent adrenal adenomas. Even in patients with a known malignancy, most of the masses are benign (Mansmaun et al., 2004).

The adrenal glands are a common site of metastatic disease. Even in a patient with a known malignancy other than an adrenal malignancy, however, an adrenal lesion is still more likely to be benign than to be malignant (Blake et al., 2006).

The issue of differentiation between benign and malignant adrenal lesions on CT has been the scope of many previous articles. The presence of intracytoplasmic lipid within adenomas has been found to accurately separate adenomas from malignant lesions (Boland et al., 1998).

Despite the high specificity of CT parameters enabling diagnosis of lipid-rich adenomas with a high degree of certainty, approximately 30% of adenomas are lipid poor, with higher attenuation values overlapping those of other adrenal masses, including malignancies (Metser et al., 2006).

Since its introduction in 1998, dual-modality PET/CT imaging has received great attention in the medical community. For the first time, patients can be examined with both CT and PET in a single examination (Beyer et al., 2004).

PET/CT tomographs represent a hardware approach to image fusion by merging the components of commercially available PET and

CT tomographs into a single gantry. Patients are scheduled for a single scan and receive 2 complementary examinations (PET and CT) whenever clinically indicated (Beyer et al., 2006).

PET/CT offers a unique hybrid imaging technique that combines the attenuation and morphologic detail of CT with the metabolic information from PET. These images can be fused to allow accurate coregistration of anatomic and functional data, and the combination of the two types of images leads to more assured anatomic localization of areas of increased metabolic activity (Blake et al., 2006).

Several advantages are associated with combined PET/CT imaging compared with retrospective or prospective software-based approaches to align complementary image data. Most important, the patient undergoing a combined PET/CT examinations is not moved physically (except for the translation of the bed) between CT and PET acquisition, thus limiting misalignment from repositioning (Beyer et al., 2004).

With the advent of PET/CT imaging, the metabolic information obtained with fluorine 18 (¹⁸F) fluorodeoxyglucose (FDG) PET can be combined with the morphologic information obtained with CT. With combined PET-CT, the superimposition of the precise structural findings provided by CT allows more accurate and reproducible correlation of a hypermetabolic focus seen at PET with the correct anatomic or pathologic equivalent (Kapoor et al., 2004).

There are PET-CT appearances of the major subtypes of adrenal disease, including benign neoplastic lesions, malignancy and benign mimics of neoplasia (e.g brown fat) (Elaini et al., 2007).

Although the fusion of the two independent data sets results in both a more comprehensive examination and more accurate localization of abnormalities, it also introduces some unique potential pitfalls and interpretative difficulties. Again, this situation is especially true in the abdomen and pelvis, where physiologic FDG uptake can be

misleading and CT has tissue characterization limitations, especially following surgery (Blake et al., 2006).

AIMOF THE WORK

To illustrate common benign adrenal lesions at PET CT and the use of PET-CT in the differentiation of benign from malignant adrenal lesions.

ANATOMY OF ADREVAL GIAND

The adrenal glands are, despite their small size, among the most important and vital organs in the body. Their function was quite unknown until 1855, when Addison first described the syndrome resulting from their destruction. In 1856 Brown-Scquard showed that their removal led to death in animals (*Sutton*, *And Philip J. A. Robinson 2002*).

DEVELOPMENT

The suprarenal (adrenal) cortex is formed during the second month by a proliferation of the coelomic epithelium (*Standring et al.*, 2008).

The adrenal gland lies retroperitoneally above each kidney. They are each enclosed within the peri-renal fascia but in a separate compartment from the kidney. The adrenal gland has an outer cortex derived from mesoderm and an inner medulla which is derived from the neural crest and is related to the sympathetic nervous system (*Ryan et al.*, 2004).

At birth the glands are comparatively larger and are approximately one-third the size of the ipsilateral kidney. The cortex of each gland reduces in size immediately after birth and the medulla grows comparatively little. By the end of the second month the weight of the suprarenal has reduced by 50%. The glands begin to grow by the end of the second year and regain their weight at birth by puberty. There is little further weight increase in adult life (*Standring et al.*, 2008).

MACROSCOPICALLY

The glands are macroscopically slightly different in external appearance. The right gland is pyramidal in shape and has two well-developed lower projections (limbs) giving a cross-sectional appearance similar to a broad-headed arrow. The left gland has a more semilunar form and is flattened in the anteroposterior plane. The left gland is marginally larger than the right. The bulk of the right suprarenal sits on

the apex of the right kidney and usually lies slightly higher than the left gland, which is on the anteromedial aspect of the upper pole of the left kidney (*Standring et al.*, 2008).

Figure 1: Normal anatomy: Kidney (1) Adrenals (2) (Quoted from Chandrasekhar et al., 2006)

The suprarenal (adrenal) glands lie immediately superior and slightly anterior to the upper pole of either kidney. Golden yellow in colour, each gland possesses two functionally and structurally distinct areas: an outer cortex and an inner medulla. The glands are surrounded by connective tissue containing perinephric fat and they are enclosed within the renal fascia. They are separated from the kidneys by a small amount of fibrous tissue. In the adult the glands measure c.50 mm vertically, 30 mm transversely and 10 mm antero-posteriorly. They each weight 0.5 gm. The dimensions of the suprarenal glands *in vivo* have been defined by *Vincent and colleagues (1994)* using computed tomography (CT). The mean dimensions of the body of the suprarenal gland are 0.61 cm (right) and 0.79 cm (left). The mean dimensions of suprarenal limbs are 0.28 cm (right) and 0.33 cm (left). No individual suprarenal limb should measure more than 6.5 mm across (*Standring et al., 2008*).

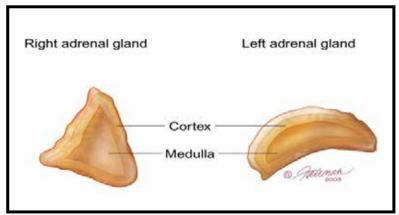


Figure 2; External appearance of adrenals (Quoted from www. Urology Health.org Anatomical Drawings)

VARIANTS

Small masses of adrenal cortical tissue called Cortical Bodies are often found near the adrenal glands. These may become attached to other organs early in embryology and migrate with these organs to be found in such places as in the broad ligament of the uterus, the spermatic cord and even the epididymis (*Ryan et al.*, 2004).

Small accessory suprarenal glands composed mainly of cortical tissue may occur in the areolar tissue near the main suprarenal glands (*Standring et al.*, 2008).

ARTERIAL SUPPLY

The suprarenal glands are very vascular. Each gland is supplied by superior, middle and inferior suprarenal arteries, whose main branches may be duplicated or even multiple (*Standring et al.*, 2008).

1. Superior suprarenal arteries

The superior suprarenal artery arises from the inferior phrenic artery, which is a branch of the abdominal aorta .It is often small and may be absent (*Standring et al.*, 2008).

2. Middle suprarenal arteries

The middle suprarenal artery arises from the lateral aspect of the abdominal aorta, at the level of the superior mesenteric artery. It ascends