Dose-Response Curve of Cis-Atracurium In Patients With Liver Impairment

Thesis in
Complete Fulfilment of the MD Degree,
In Anaesthesiology

By
Dr. Mona Ahmed Zaky Shahin
M.B.B.Ch., M.Sc. Anaesthesia

Supervised by Prof. Dr. Inas Kamel, MD

Professor of Anaesthesiology Faculty of Medicine Cairo University

Dr. Mounis Abosedira, FFARCSI, FRCA

Professor of Anaesthesiology
Anaesthesia Department
Theodor Bilharz Research Institute

Dr. Amr Abdel Monaem, MD

Assisstant professor of Anaesthesiology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2010

بسم الله الرّحمن الرّحيم (قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلَمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ مَا عَلَمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ) من الله العظيم صدق الله العظيم

سورة البقرة - آية (32)

To my parents;
My husband;
My beloved three
little daughters

Acknowledgments

First and foremost thanks to ALLAH, the most beneficent and most merciful.

I would like to express my gratitude to Prof. Dr. Inas Kamel
Professor of Anesthetiology, Faculty of medicine, Cairo University
I am greatly honored and pleased to have the opportunity to learn
from her creative advices and expanded experience, her constant
support, encouragment and willingness to teach and educate that
have pushed me forward throughout this work.

I gratefully acknowledge the sincere advice and guidance of Prof. Dr. Moanes Abo-Sedera, Professor of Anesthetiology, Theodor Bilharz Institute, for his constructive direction and indispensable guidance all through this work with scientific personality and kind heart.

My profound thanks to **Dr.Amr Abd El- Monaem, Assistant Professor of Anesthetiology, Faculty of medicine, Cairo University,**for his continous, informative help and supportive guidance

My acknowledgment will not be completed without expressing my respectful thanks and gratitude to **Dr. Hosam Helmy**, **Assistant Professor of Anesthetiology**, **Theodor Bilharz Institute**, for his mathethmatical informations, kind help and continous support all through this work.

Abstract

Cisatracurium is intermediately acting muscle relaxcant, it is three

times more potent than atracurium, with no histamine release and devoid

of cardiovascular side effects.

Patients with liver disease exhibit an abnormal response to the effect

of most muscle relaxants in the form of increased dose requirements that

when administered lasts longer due to delayed elimination. cisatracurium

seems to be favorable exception because of its unique breakdown

mechanism. This study was designed to evaluate the dose-response of cis-

atracurium in patients with mild to moderate liver impairment in (Child

A,B) classification comparison to healthy subjects. We used the two-

doses technique of dose response curve described by Meretoja and

Wirtavouri and modified by Kopman et al. for assessment.

The ED₅₀ and ED₉₅ for each group of subjects will be calculated &

statistically analysed for each individual, and this will form the dose

response curve for each individual.

In conclusion, there was no effect of liver disease on dose response

to cisatracurium apart from a statistically and clinically significant higher

ED95 (73.6 μg/kg in the hepatic group versus 50.99 μg/kg in the control

group).

Keywards: Cisatracurium – Liver disease – Dose response curve.

(ii)

List of Content

	Page
INTRODUCTION	1
Aim Of Work	5
HISTORY OF MUSCLE RELAXANTS	6
NEUROMUSCULAR ANATOMY AND PHYSIOLOGY	10
Morphology of neuromuscular junction	10
Quantal Theory	13
Acetylcholine Synthesis, Storage, and Release	16
The Physiology of Neuromuscular Junction	18
Formation of neurotransmitter at Motor Nerve Ending	18
Nerve Action Potential	19
Synaptic vesicles and recycling	22
Process of Exocytosis	24
Binding of acetylcholine to end-plate receptors and muscle	
contraction	25
Postjunctional Effects	26
Types of Receptors	29
Muscarinic Receptors	29
Nicotinic Receptors	29
Prejunctional Receptors	30
Extrajunctional Receptors	31
Muscle Relaxants Effects on Postjunctional Receptors	32
* Classical Actions of Nondepolarizing Muscle Relaxants	32
*Classical Action of Depolarizing Muscle Relaxant	33
*Desensitization Block	37
*Channel Block	39

	Page
PHARMACOLOGY OF NON-DEPOLARIZING	
MUSCLE RELAXANTS	41
1. Source and Synthesis	41
2. Chemistry And Structure-Activity	42
Classification By Chemical Structure	42
Classification by Duration of Action	45
Pharmacodynamics of Non-depolarizing Muscle Relaxants	45
Other Effects of Nondepolorizing Muscle Relaxants	47
Factors Affecting Pharmacology of Relaxants	61
MONITORING OF NEUROMUSCULAR FUNCTION	79
1. Clinical Monitoring	79
Pattern of Nerve Stimulation	79
1 -Single Twitch Stimulation	80
2- Train-of-four Stimulation (TOF)	82
3- Tetanic Stimulation	83
4- Post-Tetanic Count Stimulation	86
5) Double Burst Stimulation (DBS)	88
Sites of Nerve Stimulation and Different muscle responses	89
Methods Of Measureament Of Evoked Responses	92
1- Mechanomyography (MMG)	93
2- Electromyography (EMG)	93
3- Acceleromyography (AMG)	97
4- Piezoelectric Neuromuscular Monitors	100
5- Phonomyography (PMG)	100
6. Clinical Assessment	101
Evaluation of Recorded Evoked Responses	102
Non-Depolarizing Neuromuscular Blockade	102

Depolarizing Neuromuscular Blockade
ANTAGONISM OF NON-DEPOLAMZING
NEUROMUSCULAR BLOCKADE
1. Neuromuscular Effects
2. Cardiovascular Effects
3. Respiratory Effects
4. Gastrointestinal Effects
5. Pharmacokinetics
Other Reversal Agents
Factors Affecting Antagonism Of Nondepolarizing Blockad
CISATRACURIUM
Chemistry
Nature and Content of the Container
Animal Studies
Pharmacodynamics
Dose Response and Onset of Action
Intubation Conditions
Clinically Effective Duration and Rate of Recovery
Maintenance of Neuromuscular Block
Continuous Infusion
Spontaneous Recovery
Reversal of Neuromuscular Block
Patients With Hepatic Impairment

	Page
Patients With Renal Impairment	137
Morbid Obese Patients	137
Malignant Hyperthermia (MH)	138
Cisatracurium in patients with oculopharyngeal muscle	
dystrophy	138
Pregnancy, Teratogenic Effects	139
Labor and Delivery	139
Nursing Mothers	140
Drug Interactions	140
MATERIAL AND METHODS	142
Anesthetic Management	143
Induction and Maintenance	145
RESULTS	149
Demographic Data	149
Laboratory Parameters	152
Operative Data	160
DISCUSSION	166
SUMMARY	176
REFERENCES	180
ADADIC CHMMADV	

List of Table

	Page
Table (1): Sensitivities of different muscle groups to	46
nondepolarizing relaxants in a descending order	
(88).	
Table (2): Autonomic effects Of non-depolarizing muscle	51
relaxants (101).	
Table (3): Summary of cardiovascular effects of relaxants (*)	54
in high doses only, when accompanying tachycardia,	
(+) in higher doses only (105)	
Table (4): Approximate autonomic margins of safety of	55
nondepolarizing relaxants a (100).	
Table (5): Metabolism and elimination of nondepolarizing	58
blocking agents(101).	
Table (6): Plasma protein binding of some muscle relaxants for	65
a large number of basic drugs is AAG (122).	
Table (7): Interaction among antibiotics, nondepolarizing	72
muscle relaxants, neostigmine, and calcium(101).	
Table (8): Summary of responses of patients with	76
neuromuscular disorders to muscle relaxants(144).	
Table (9): Onset time of cistracurium at different ED ₉₅ .	128
Table (10): Efficacy data following initial doses of	129
cisatracurium and atracurium in healthy adults	
Table (11): Demographic data of the patient in the two groups.	155
Table (12): Laboratory parameters in the two groups of the	158
study.	
Table (13): Operative data in the two groups of the study	166

List of Figure

		Page
Fig. (1):	Example for dose response curve (8).	3
Fig. (2):	Morphology of Neuromuscular Junction(31)	11
Fig. (3):	Structure of the adult neuromuscular junction	12
	showing	
Fig. (4):	The working of a chemical synapse, the motor nerve	16
	ending, including some of the apparatus for	
	synthesis of transmitter (31)	
Fig. (5):	Model of protein modulated membrane fusion and	24
	exocytosis(31)	
Fig. (6):	The actions of acetylcholine or curare on end-plate	28
	receptors (31).	
Fig. (7):	These are three types of Acetylcholine receptor at	31
	Neuro-Muscular-Junction.	
Fig. (8):	Structural similarities between nondepolarizing	41
	muscle relaxant (vecuronium) and acetylcholine	
	(31).	
Fig. (9):	Chemical structure of isoquinolonium compound	42
	(83).	
Fig. (10):	: Chemical structure of steroidal compounds(38)	43
Fig. (11):	: Single-twitch stimulation (150)	79
Fig. (12):	: Train-of-four stimulation (151).	81
Fig. (13):	Tetanic stimulation (154).	83
Fig. (14):	Post-tetanic count stimulation(155).	86
Fig. (15):	Double burst stimulation (DBS) (151).	87
Fig. (16):	Electrode placement for stimulation of the ulnar	93
Fig. (17):	: TOF- Watch (148).	96
Fig. (18):	Chemical structure of Sugmadex(192).	116
Fig. (19):	: Suugumadex binding rencapsulation of rocuronium	117
	(192)	

	Page
Fig. (20): The chemical structure of 4-aminopyridine(197)	119
Fig. (21): The structural formula of cisatracurium besylate	124
(25)	
Fig. (22): Cisatracurium is not associated with cumulation of	133
neuromuscular blocking effects during maintenance	
doses (218).	
Fig. (23): Slopes of spontaneous recovery of twitch following	136
0.1, 0.2, and 0.4 mg/kg of cisatracurium	
Fig. (24): Proposed degradation pathway of cisatracurium in	139
human plasma	
Fig. (25): Plasma histamine levels following Doses of eight	142
times ED ₉₅ of cisatracurium	
Fig. (26): Comparison of age between the two groups.	156
Fig. (27): Comparison of the patient's weight in the two	156
groups	
Fig. (28): Sex prevalence in the two groups.	157
Fig. (29): ASA Class prevalence in the two groups.	157
Fig. (30): Hb% in the two groups.	159
Fig. (31): Blood glucose in the two groups.	160
Fig. (32): Urea in the two groups.	160
Fig. (33): Creatinine in the two groups.	161
Fig. (34): Albumin in the two groups.	161
Fig. (35): Total billirubin in the two groups.	162
Fig. (36): AST in the two groups	162
Fig. (37): ALT in the two groups.	163
Fig. (38): Total protein in the two groups	163
Fig. (39): PT in the two groups.	164

	Page
Fig. (40): PC in the two groups.	164
Fig. (41): INR in the two groups.	165
Fig. (42): 1 st dose response (degree of suppression) in % in the	167
two groups.	
Fig. (43): The estimated ED80 in the two groups.	168
Fig. (44): The calculated 2nd dose ($\mu q/kg$) in the two groups	168
Fig. (45): The 2 nd dose response (degree of suppression) in %	169
in the two groups.	
Fig. (46): The measured ED50 in the two groups	169
Fig. (47): The measured ED95 in the two groups	170
Fig. (48): The measured dose response curve of the control	170
group.	
Fig. (49): The measured dose response curve of the hepatic	171
group.	
Fig. (50): Comparison between the measured dose response	171
curve of the control group versus the hepatic group.	

List of Appreviations

Ach : Acetylcholin

AMG : Acceleromyography

ANH : Acute normovolemic hemodulation

CPB : Cardiopulmonary by pass

CVS : Cardiovascular

DBS : Double burst stimulation

E>0.7 : Hepatic extraction ratio > 0.7

ECF : Extra-cellular fluid

EMG : Electromyography

ETI : Effective therapeutic infusion

ETT : Effective therapeutic infusion rate

DRG : Dorsal root ganglion

M.sec : Milli second

MAC : Minimum alveolar concentration

MEEP : Miniature acetylcholine receptor

MEPPs : Miniature end plate potential

MMG : Mechanomyoraphy

μsec. : Microsecond

 N_2O : Nitrous-oxide

nAchR : Nicotinic acetylcholine receptors

NDMR : Non-depolarizing muscle relaxant

NDRs : Nondepolarizing relaxation

Nm : Nanometer

NMBD : Neuromascular blocking drug

OPMD : Oceulopharyngeal muscle dystrophy

PTC : Post-tetanic count

SCG : Sympathetic cervical ganglion

SNAREs : Soluble N-ethylmaleinble sensitive attachment

protein receptors

SNAREs : Soluble N-ethylmaleinide sensitive attachment

protein receptors

TIVA : Total intravenous anaesthesia

TOF: Train - of - four