Biofilm Formation by Candida Species and its Effect on their Resistance to Antifungal Therapy in Ain Shams pediatric ICU

Thesis

Submitted for Partial Fulfillment of Master **Degree in Pediatrics**

By
Anas Hassan Abd-Elwahab
M.B.B. Ch, (2002)

Under Supervision of

Professor Doctor. Hanan Mohamed Ibrahim

Professor of Pediatrics

Faculty of Medicine-Ain Shams University

Doctor. Asmaa El-Huseiny Ahmed

Lecturer of Pediatrics

Faculty of Medicine-Ain Shams University

Doctor. Shereen Bendary El-Sayied
Ass. Professor of Medical Microbiology and Immunology
Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2010

تأثير الغشاء الحيوى المكون بواسطة فطر الكانديدا على مقاومته لمضادات الفطريات (دراسة في الرعاية المركزة للأطفال بمستشفى عين شمس الجامعي)

توطئة للحصول على درجة الماجستير في الب الأطفال

مقدمه من:

الطبيب/أنس حسن عبد الوهاب بكالوريوس الطب والجراحة - جامعة عين شمس (٢٠٠٢)

تحت إشراف

الأستاذة الدكتورة/ حنان محمد إبراهيم أستاذ طب الأطفال كلية الطب – جامعة عين شمس

الدكتورة/ أسماء الحسيني أحمد مدرس طب الأطفال كلية الطب - جامعة عين شمس

الدكتورة/ شيرين بندارى السيد أستاذ مساعد الميكروبيولوجيى الطبية والمناعة كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس

Contents

	Page
List of Abbreviations	
List of Tables List of Figures	
Introduction and Aim of the Work	
* Critically ill child	3
* Fungal Infections in PICU	17
* Virulence Factors of Candida and Its Antifunga	1
Resistance	28
Subjects and Methods	50
Results	57
Discussion	83
Summary	91
Conclusion	94
Recommendations	95
References	96
Arabic Summary	

List of Tables

Table	Subject	Page
Tables of Review of Literature		
1	Common conditions presenting as	4
	cardiopulmonary failure	
2	Criteria for PICU and PIICU admission	
3	Vital signs at various ages	8
4	Child's Glasgow coma scale	12
5	Clinical staging of encephalopathy	13
6	Verbal responses of pediatric scales	
	Tables of Results	
1	Distribution of studied cases as regards	57
	general data	
2	Distribution of the studied cases as regards	57
	causes of admission to PICU	
3	Distribution of the studied cases as regards	58
	type of treatment	
4	Distribution of the studied cases as regards	59
	invasive maneuvers performed	
5	Distribution of the studied cases as regards	59
	laboratory data	
6	Distribution of the studied cases as regards	60
	predicted death rate according to PRISM and	
	the real outcome	
7	Mortality rate in relation to the cause of	61
	admission to ICU	
8	Frequency of colonization of different Isolates	61
	of candida (D0)	
9	Frequency of acquisition of different Isolates	62
	of candida (D3)	
10	Frequency of biofilm forming at D0 and D3	63
	between all isolates	
11	Sensitivity of different isolates to different	63
	antifungal drugs	

List of Tables (Cont.)

Table	Subject	Page
12	Death rate in colonizing candida isolates(at D0)	64
13	Death rate due to different acquired candida Isolates (at day3)	65
14	Death rate due to biofilm former isolates at D0	66
15	Death rate due to biofilm former isolates at D3	66
16	Comparison between frequency of biofilm formation in different candida Isolates (D0)	68
17	Comparison between Frequency of biofilm formation in different Candida Isolates (D3)	69
18	Comparison between sensitivity of different Candida Isolates to Amphoterecin-B at D0	70
19	Comparison between sensitivity of different candida Isolates to Itraconazole at D0	70
20	Comparison between sensitivity of different candida Isolates to ketoconazole at D0	71
21	Comparison between sensitivity of different Isolates to fluconazole at D0	71
22	Comparison between sensitivity of different Isolates to flucytosine at D0	72
23	Comparison between sensitivity of different candida Isolates to nystatin at D0	72
24	Comparison between sensitivity of different candida Isolates to clotrimazole at D0	73
25	Comparison between sensitivity of different candida Isolates to voriconazole at D0	73
26	Comparison between sensitivity to different antifungal drugs between biofilm former Isolates at D0	74
27	Comparison between sensitivity of different candida Isolates to amphotericin-B at D3	76

List of Tables (Cont.)

Table	Subject	Page
28	Comparison between sensitivity of different candida Isolates to itraconazole at D3	76
29	Comparison between sensitivity of different candida Isolates to ketoconazole at D3	77
30	Comparison between sensitivity of different candida Isolates to fluconazole at D3	77
31	Comparison between sensitivity of different candida Isolates to flucytosine at D3	78
32	Comparison between sensitivity of different candida Isolates to nystatin at D3	78
33	Comparison between sensitivity of different candida Isolates to clotrimazole at D3	79
34	Comparison between sensitivity of different candida Isolates to voriconazole at D3	79
35	Comparison between sensitivity to different antifungal drugs between biofilm formers at D3	80

List of Figures

Fig.	Subject	Page
	Figures of Review	
1	Pathway of deterioration in critical illness.	5
2	Superficial mucocutanous candidiasis	21
3	Histology of oesophageal candidiasis	22
5	Conidial head of Aspergillus niger	26
6	Candida albicans without biofilm	31
7	Candida albicans with biofilm	31
Figures of Results		
1	Distribution of the studied cases as regards	58
	causes of admission to PICU.	
2	Mortality percent by different candida isolates	64
	at D0 shows highest mortality by C.glabrata	
	and C.tropicalis	
3	Mortality percent by different candida isolates	65
	at D3	
4	Comparison between Fatality in BF isolates at	67
	D0 and at D3	
5	Comparison of ability of different candida	68
	isolates to form biofilm at D0	
6	Comparison of ability of different candida	69
	isolates to form biofilm at D3	
7	Comparison between resistance of BF isolates	75
	on different antifungal drugs at D0	
8	Comparison between resistance of BF isolates	81
	on different antifungal drugs at D3	
9	Comparison of effectiveness of different	82
	antifungal drugs on total BF isolates	

الملخص العربي

إن حدوث العدوى الفطرية في مرضى الحالات الحرجة ازدادت بشكل ملحوظ في العقود الأخيرة، ومعظم هذه العدوى نتيجة الإصابة بفطر الكانديدا بالتحديد، حيث أن هذا النوع يمتلك عامل خطورة مهم (عامل الالتصاق) وهو القدرة علي تكوين أغشية حيوية، وقد ثبت أن وجود فطر الكانديدا بالأغشية الحيوية هذه يجعله أكثر مقاومة لمضادات الفطريات أكثر من غيره.

وفي هذه الدراسة كان هدفنا هو قياس قدرة العينات الإكلينيكية لمختلف أنواع فطر الكانديدا لتكوين غشاء حيوي في الأنابيب داخل المعمل، ومقارنة مقاومة مضادات الفطريات بواسطة الكانديدا ذات الغشاء الحيوي والأخرى من غير هذا الغشاء.

وتم عمل هذه الدراسة علي المرضى المحجوزين في الرعاية المركزة للأطفال بمستشفى عين شمس الجامعي.

تم إجراء هذه الدراسة علي (٥٠) حالة حرجة تم حجزهم بالرعاية المركزية للأطفال من يوليو ٢٠٠٩م وحتى شهر ديسمبر ٢٠٠٩ وقد تم الكشف علي الحالات وأخذ العينات منهم مرة عند دخولهم الرعاية ومرة أخرى في اليوم الثالث لهم بالرعاية المركزة.

وقد خضع كل هؤلاء المرضى لعمل الاتى:

- تسجيل بياناتهم وفحصهم إكلينيكيا.
- قياس معدل احتمالية الوفاة للأطفال (PRISM).
- تسجيل القياسات المعملية الخاصة بالحالات المسجلة في تذاكر الدخول وتم جمع العينات ومتابعة الحالات وتسجيل مصير كل منهم سواء تحسن وخروج أو وفاة.

*تم أخذ العينات من الأماكن الآتية (البلعوم الفموي، الإبط، المستقيم) وتم زرعها في مادة (SDA).

وتم عمل الآتي لكل عينة:

- فحص مباشر، زرع، عزل، اختبارات تعرف على الكانديدا المختلفة.
- اختبار حساسية ومقاومة مختلف العينات لمضادات الفطريات مرتين. المرة الأولى: بطريقة (MIC).

المرة الثانية: بعد تحفيز الكانديدا لتكوبن أغشية حيوية بطريقة (MIBC)

وظهرت نتائج هذه الدراسة كالتالي:

- ٧٠% من مرضانا قد أصيبوا بالكانديدا قبل دخول الرعاية المركزة.
- إن جميع أنواع الكانديدا لها قدرة كبيرة علي تكوين أغشية حيوية وأكثرهم كانت C. Tropicalis, C. Parapsilosis C.Krusi.
- إن تكوين الأغشية الحيوية ارتفع داخل الرعاية المركزة وإن معدل الوفيات ارتفع بين الإصابات بالكانديدا ذات الأغشية الحيوية (٦٥%).
- بالنسبة للحساسية لمضادات الفطريات وجدنا أنه الفوريكونازول كان الأكثر تأثيراً علي كل العينات بنسبة ١٠٠% (المكونة للأغشية الحيوية والأخرى الغير مكونة).
- الأمفوتيريسين ب والفلوسيتوسين يليا الفوريكونازول في التأثير علي عينات الكانديدا ذات الأغشية الحيوية.
- ولكن الأزولات القديمة (الفلوكونازول، الإتراكونازول، الكلوتريمازول، الكيتوكونازول) كانوا أقل تأثيراً على الكانديدا ذات الأغشية الحيوية.
 - وأخيراً النيستاتين لم يكن له أي تأثير على الكانديدا ذات الأغشية الحيوية.
- وإنه لمن الواضح في دراستنا هذه أن الكانديدا ذات الأغشية الحيوية أكثر مقاومة لمضادات الفطريات من غيرها.

وأخيرا نوصى بالاتى:

- _ عمل دراسات تشمل أعداد أكثر من عينات الكانديدا لتقييم الاختلاف في تأثير مضادات الفطريات على الكانديدا المكونة للأغشية الحيوية والأخرى الغير مكونة.
 - _ ننصح عند طلب مزرعة و حساسية للكانديدا ان تكون بطريقة MIBC .
 - _ نوصى باستخدام الفوريكونازول لحين ظهور نتيجة المزرعة.

Introduction

The incidence of nosocmial infection by candida has surged over the past decade, from the eighth to the fourth most common cause of nosocomial bloodstream infections in the general hospitals population (*Playford*, 2006).

Many candida Spp. Produce surface-adherent biofilm populations that are resistant to antifungal compounds and other environmental stresses (*Harrison et al.*, 2007).

Biofilms are microbial communities that are associated with solid surfaces such as intravascular Catheters, Candida species are a major cause of medical device – associated infections.

Twenty percent to 70% of all candidemias are associated with this biofilms process (*Nett et al.*, 2007).

Usage of bio-prostheses such as IV lines and urinary catheters provide ample opportunity for candida biofilms to set up anidus for disease that is not easily amenable to conventional antifungal therapy (*Kumar CP and Menon T*, 2006).

In the recent years, there has been a marked increase in the incidence of treatment failures in Candidiasis patients receiving long-term antifungal therapy, which has posed a serious problem in its successful use in chemotherapy, Biofilm associated candida show uniform resistance to a wide spectrum of antifungal drugs (*Mishra et al.*, 2007).

Hypothesis

Colonizing candidal strains in pediatric ICU patients that can form biofilm need high concentration of antifungal drugs to be eradicated.

Aim of the Work

The aim of the work is to study the ability of clinical isolates of candida Spp. To form biofilms in vitro and to compare the antifungal susceptibility of sessile cells and their planktonic counterparts in patients admitted in pediatric ICU in Ain Shams University Hospitals.

Critically III Child

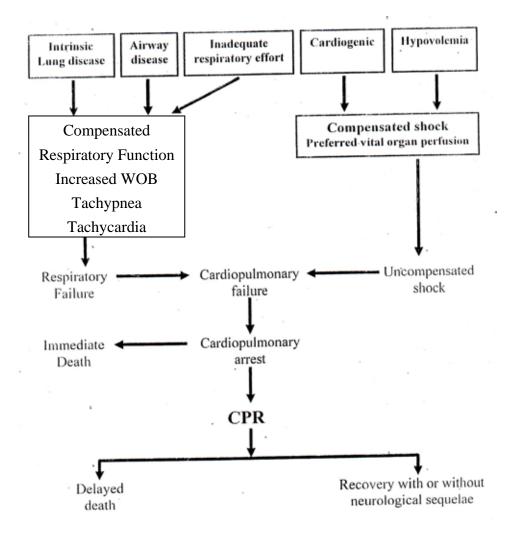
Historical review:

The first pediatric ICU was established in Europe by Goran Haglund in 1955 at Children's Hospital of Goteburg in Sweden, 10 years before the unit at Children's Hospital of the District of Columbia developed by Cheston Berlin. John Downes opened the *next* recorded pediatric ICU at Children's Hospital of Philadelphia in 1967 (*Downes*, 1992).

Over the next 40 years, hundreds of pediatric ICUs would be established in academic institutions, children's hospitals, and many community hospitals throughout North America and Europe identified 306 general pediatric ICUs in the United States in 1995 and 349 in 2001 (*Randolph et al.*, 2004).

Introduction:

Patients requiring intensive care usually require support for hemodynamic instability (hypertension/hypotension), airway or respiratory compromise (such as ventilator support), acute renal failure, potentially lethal cardiac dysrhythmias, and frequently the cumulative effects of multiple organ system failure. Patients admitted to the intensive care unit not requiring support for the above are usually admitted for intensive/invasive monitoring (*Kahn et al.*, 2006).


A common denominator of critical illness in children is cardiopulmonary compromise, this typically occurs as a result of Progressive deterioration of respiratory and circulatory function during the course of various diseases as outlined in (Fig. 1) and (Table 1) (*Chameides*, 1990).

Review of Literature

Table (1): Common conditions presenting as cardiopulmonary failure

1- Intrinsic lung diseases	4- Cardiogenic shock	
- Pneumonia	- Myocarditis	
-Adult respiratory distress syndrome	-Congenital heart disease	
- Loss of lung volume	- Cardiac tamponade	
- Pleural effusion	5- Hypovolemia	
- Pneumothorax	- Burns	
	- Diabetic ketoacidosis	
2- Airway diseases	- Hemorrhage	
- Bronchiolitis	- Gastrointestinal losses	
- Acute severe bronchial asthma		
- Laryngiotracheobronchitis		
- Epiglottitis		
- Foreign body aspiration		
3- Inadequate respiratory effort		
- Sepsis		
- Severe trauma		
- Poisoning		
- Guillain-Barre syndrome		
- Poliomylitis		

(Chameides, 1990)

Fig.(1): Pathway of deterioration in critical illness. Common diseases in groups 1 through 5 lined in table (1).

WOB: Work of breathing (*Chameides*, 1990).

Unlike pediatric patients who require general care, these patients usually have a disease process that affects more than one organ system, commonly referred to as multiple organ system failure (MOSF) or dysfunction (MOSD). Successful PICUs use a multidisciplinary approach to care for these patients (*Frankel*, 2004).