

Ain Shams University

Faculty of Engineering

Cairo-Egypt

Electronics & Communication Department

Evaluation of Admission Control Schemes for wireless VoIP

A Thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science in Electrical Engineering

Submitted By

Eng. Amr Ramadan Mahmoud

B.Sc. of Electrical Engineering

(Electronics & Communication Department)

Cairo University, 2004

Supervised by

Prof. Dr. Abdel Halim Abdel Naby Zekery

Faculty of Engineering, Ain Shams University

Prof. Dr. Fathy Ahmed El Sayed Amer

Faculty of Computers & Information, Cairo University

Cairo - 2010

Ain Shams University

Faculty of Engineering

Cairo-Egypt

Examiners Committee	
Name: Amr Ramadan Mahmoud	
Thesis: Evaluation of Admission Control Schemes for wireless Vol	IP
Degree: Master of Science in Electrical Engineering (Electronics & Engineering)	& Communication
Name, Title and Affliation	Signature
1- Prof. Dr. Mahmoud Ibrahim Abd El Rahman Marei	
Faculty of Engineering, Al Azhar University	
2-Prof. Dr. Nagda Mohamed Helmy Elminyawy	
Faculty of Engineering , Ain Shams University	
3- Prof. Dr. Abdel Halim Abdel Naby Zekery	
Faculty of Engineering , Ain Shams University	
4- Prof. Dr. Fathy Ahmed El Sayed Amer	
Faculty of Computers & Information, Cairo University	

Statement

This Thesis is submitted to Ain Shams University in

partial fulfillment of the degree of Master of Science

in Electrical Engineering.

The work included in this thesis was carried out by

the author in the Department of Electronics and

Communication Engineering, of Faculty

Engineering, Ain Shams University.

No part of this Thesis has been submitted for a

degree or a qualification at any university or

institute.

Name: Amr Ramadan Mahmoud

Signature:

Date:

Abstract

Call Admission Control schemes are used to prevent congestion in Voice Traffic. It is used during the Call Setup phase to ensure there is Sufficient bandwidth for the authorized flows, Call Admission Control kicks in to reject calls when either there processing insufficient CPU power, Upstream/Downstream traffic exceeds predefined thresholds, or the number of calls being handled exceeds a predefined figure, this will lead to stable service operation and acceptable QoS levels. There are many Call Admission Control schemes which all tried to overcome the problem of "avalanche effect" which is the congestion of network due to increasing of number of connections of VoIP in WLAN but the difference is in the performance which may vary from scheme to another One of these weak performance schemes is the Theoretical Network Capacity Estimation Scheme.

This Thesis focus on two points the first is comparative evaluation survey for admission control techniques for wireless VoIP. A number of papers surveyed dealing with this point and these parameters of comparison are: Downlink Average Frame Error Rate, Downlink Average Access Point Delay, User block rate, Utilization of network, Capacity limit, Voice quality measure R score, Packet loss rate, Delay of voice packets and

percentage of incorrect decisions. The results of our comparison indicated that the major factors which are common in many papers are: capacity limit, percentage of incorrect decisions, packet loss rate and delay of voice packets and the ways to improve these main factors will be illustrated.

Second point is to combine Theoretical Network Capacity Estimation Scheme to a strong performance scheme which is the Transmission Buffer Utilization Ratio Scheme. A simulation model is done to proposed scheme the with compare Simulation results have shown that the proposed scheme succeeded in improving the performance of theoretical network capacity estimation scheme and increase number of calls permitted with small and acceptable degradation in performance in the other performance parameters like mean opinion, Frame delay, Throughput and Packet loss.

Acknowledgment

I would like to thank God for helping me in this work. Also I would like to express my deepest appreciation and sincere to my supervisors Prof. Dr. Abdel Halem Zekry and Prof. Dr. Fathy Ahmed Al Sayed Amer for their continuous guidance, helpful comments, valuable suggestions, kind advise and capable supervision which helped this thesis to be in its present form.

I would like like to thank all my family, my fiancé and my friends who helped me in one way or another.

I also would to thank Tarek Hassan who helped me in one way or another.

Contents

Chapter One: Introduction

	1
1.2 VoIP	2
1.3 VoIP System	5
1.4 Development of VoIP & VoWLAN	12
1.5 Problem Definition	16
1.6 Research objectives	17
1.7 Thesis Organization	17
Chapter Two: Survey on VoIP Solve Problems	ed
•	ed
Problems	

2.3 Performance of VoIP in a 802.11 Wireless Mesh Network	26
2.4 Performance Optimization of VoIP using an Overlay Network	60
Chapter Three: Comparative Evaluation Survey for Admission Control Schemes for wireless VoIP	
3.1 Wireless Network	33
3.2 Comparison Evaluation Factors	37
3.3 Summary of research papers and there comparison Evaluation parameters	
3.3.1 A New Call Admission Control Scheme for Volin IEEE 802.11 Wireless LANs	
3.3.2 Admission Control for VoIP Traffic in IEEE 802.11 Network	40
3.3.3 On Admission of VoIP Calls Over Wireless Mes Network	
3.3.4 A New Call Admission Control scheme for Real- time traffic in Wireless Network 4	
3.3.5 Distributed Delay Estimation and Call Admission Control in IEEE 802.11 WLANs	1 14

3.3.6 VoIP on Wireless Meshes: Models, Schemes Evaluation	
3.3.7 Endpoint Admission Control for	
VoIPoWLAN	47
3.3.8 Admission Control for Multihop Wireless Back Networks with QoS Support	
3.4 Comparison evaluation of CAC techniques	50
3.5 Comments on the surveyed papers	51
3.6 Results	52
Chapter Four: Comparison Evaluation of Proposed Scheme with other CAC Scheme	
•	53
Proposed Scheme with other CAC Scheme	
Proposed Scheme with other CAC Scheme 4.1 Parameters Descreption	55
Proposed Scheme with other CAC Scheme 4.1 Parameters Descreption 4.2 Schemes to be Compared to Proposed Scheme	55
4.1 Parameters Descreption 4.2 Schemes to be Compared to Proposed Scheme 4.3 Proposed Scheme 4.4 Proposed Scheme 4.5 Proposed Scheme 4.6 Proposed Scheme 4.7 Proposed Scheme 4.8 Proposed Scheme	55 58

Chapter Five: Conclusion and Future work

Refrences	82
5.2 Future Work	80
5.1 Conclusion	79

List of Tables

Table (1.1) IEEE 802.11a link adaptation parameters 1	.0
Table (1.2) Bands of WLAN	2
Table (3.1) Comparison of CAC techniques 5	50
Table (4.1) Overhead per packet in bytes for IEEE 802.11	55
Table (4.2) Comparison between EQA, BSA and Proposed	d
Scheme 7	8

List of Figures

Ethernet 5
Fig. (1.2) Layers of WLAN
Fig. (1.3) operation of the basic access mechanism 11
Fig. (1.4) VoIP Subscriber and Revenue Growth, 2005- 2008
Fig. (1.5) European VoIP Subscriber and Revenue Projections, 2006-2013
Fig. (2.1) architecture of a simple enterprise 802.11 WLAN
Fig. (2.2) Frame exchange sequence of PS-bit based mechanism
Fig. (2.3) Frame exchange sequences of PS-Poll based mechanism
Fig. (2.4) Frame exchange sequence
Fig. (2.5) Mesh system showing two clients connected, and the paths maintained between them
Fig. (3.1) VoIP Network Without CAC
Fig. (3.2) VoIP Network With CAC
Fig. (3.3) overall CBP of the system with and without using RT-CAC

Fig. (3.4) Delay estimation using Time between Idle Tim (TBIT)	
Fig. (4.1) Transmission time of a single VoIP packet taking into account all the overheads	_
Fig. (4.2) Flow Chart of the Proposed Scheme	63
Fig. (4.3) Network Model	63
Fig. (4.4) Traffic Distribution	68
Fig. (4.5) Simulation Steps done on ns2 simulator	69
Fig. (4.6) Frame Delay	71
Fig. (4.7) Packet Loss Comparison	73
Fig. (4.8) Throughput Comparison	74
Fig. (4.9) Frame Delay Comparison	75
Fig. (4.10) MOS comparison	76
Fig. (4.11) Number of VoIP Calls Permitted Comparison	77

Abbreviations

ACK Acknowledgment

AP Access Point

BSA Transmission Buffer Utilization Ratio Scheme

CAC Call Admission Control

CBA Channel Busyness Ratio

CBR Constant Bit Rate

CFP Contention Free period

CP Contention Period

CUE Channel Utilization Estimate

CUE_{Total} Channel Utilization Estimate of number of VoIP connections served

CUE_{TotalMax} de-facto limit of the Channel Utilization Estimate

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

DCF Distributed Coordination Function

DIFS Distributed Interframe Space

DPCF Dynamic Point Coordination Function