

M.Sc thesis (Microbiology)

Submitted by

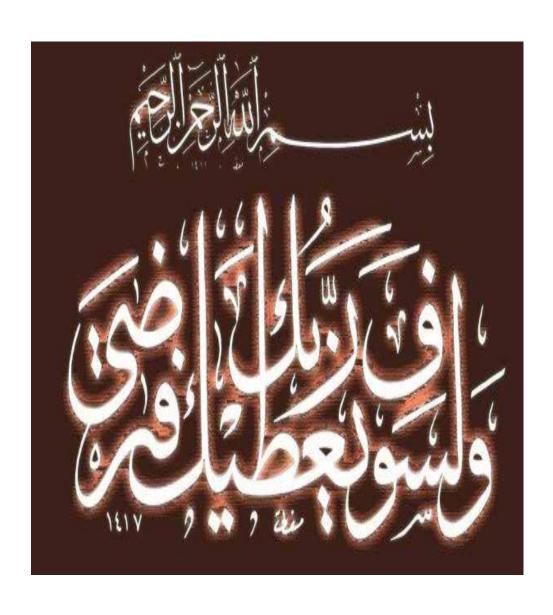
Ahmed El Sayed Mohamed El Aysh

(B.Sc degree in Microbiology/Chemistry, 2002)

<u>Title</u>

Multiplex PCR for direct detection of vancomycin resistant *Staphylococcus aureus* isolated from clinical samples

<u>Supervisors</u>


Prof Dr. Mohamed Sayed Salama

Professor of Molecular biology
Vice President of Ain Shams University
for Postgraduate studies and research

Dr. Hala Mohammed Abu Shady Dr. Ayman Kamal El Essawy

Assistant professor of Microbiology
Faculty of Science
Ain Shams University

Fellow of Microbiology Specialized Hospital Ain Shams University

Acknowledgment

I would like to express my deepest gratitude to Prof Dr. Mohamed Elsayed Salama for his kind supervision, valuable critism and continuous support through out this work. Indeed without his guidance, this work would have never come to light.

I wish to express my highest appreciation and sincere thanks to Prof Dr. Hala Abu Shady for her continuous valuable advice, constant support and encouragement through out my work.

I am particularly indebted to Dr. Ayman Kamal El-Essawy for his actual guidance in fulfilling the practical part of this thesis and in guiding me through all parts of this work.

ABSTRACT

Ahmed El Sayed Mohamed El Aysh. Multiplex PCR for direct detection of vancomycin resistant *Staphylococcus aureus* isolated from clinical samples (M.Sc). Faculty of Science, Ain Shams University.

Vancomycin resistant Staphylococcus aureus (VRSA) has emerged over the last ten years. The most resistant strains (fortunately rare) bear the vanA gene cluster. In this study 439 isolates were collected from hospitalized patients in Zagazig university hospital, ten VRSA strains were isolated from 220 patients infected with S. aureus according to conventional methods then investigated by multiplex PCR for vanA and nuc genes. A high percentage of VRSA was observed in the present study which may be explained by administration of multiple prophylactic and post-operative antibiotics with prolonged hospitalization. All VRSA isolates were sensitive to (cefoperazone, trimethoprime, amikin and rifampin) and resistant to (clavulinic acid, cefoxtin, cefazolin, oxacillin, tetracyclin, vancomycin and Cefexime). Only five of them were positive for vanA gene by multiplex PCR, although all were confirmed as S. aureus by multiplex PCR (nuc gene positive). The resistance of Staphylococci to vancomycin has been found to be reversible under laboratory conditions. Moreover, thickening of the bacterial cell wall may be the underlying mechanism for vancomycin resistance in these Randomly amplified polymorphic bacteria. DNA previously used for typing of MRSA. The present study provided a molecular typing (by RAPD) for the reported VRSA strains using four different pairs of primers. However, more studies are still needed to explore the definite mechanisms by which these strains acquire resistance to vancomycin which may open the door to overcome this problem.

LIST OF ABBREVIATION

AM	Amikin
AMCC	Clavulinc Acid
AMPI	Ampicillin
ATP	Adenosin Tri Phosphates
CDC	Centers For Disease Control And Prevention
CEC	Cefoxtin
CES	Cefoperazon
CTX	Cefexim
CZ	Cefazoline
DNA	Deoxyribonucleic Acid
EDTA	Ethylene Diamine Tetracetic Acid
FW	Fresh Weight
HLR	High-Level Representation
ICU	Intensive Care Unit
MIC	Minimum Inhibition Concentration
MI-VRSA	Michegene Isolates
MRSA	Methicillin-Resistant Staphylococcus aureus
MSSA	Methicillin-Sensitive Staphylococcus aureus
NCCLS	The National Commmittee For Clinical Laboratory
	Standards
NNISS	National Institute of Statistical Sciences
OX	Oxacilin
PA-VRSA	Pennsylvania VRSA
PBP2A	Penicillin-Binding Protein 2A
PBPS	Penicillin-Binding Proteins
PCR	Polymerase Chain Reaction
PFGE	Pulsed Field Gel Electrophoresis
PMNS	Polymorphonuclear Leukocytes
R RNA	Ribosomal Ribonucleic Acid
RAPD	Random Amplification Of Polymorphic
RFLP	Restriction Fragment Length Polymorphism
RIF	Rifampine
RNA	Ribonucleic Acid
SXT	Trimethoprime
TBE	Tris Base, Boric Acid And EDTA.

TE	Tetracycline
VA	Vancomycin
VISA	Vancomycin- Intermediate S. aureus
VRE	Vancomycin-Resistant Enterococci
VRSA	Vancomycin-Resistant Staphylococcus aureus
VSSA	Vancomycin-Susceptible S. aureus

LISTS OF FIGURES

FIGURES	CONTENTS	PAGE
Fig (1)	Percentages of MRSA & VRSA among 220 S. aureus isolates	65
Fig (2)	Percentages of MRSA and VRSA isolates among different wards	66
Fig (3)	Percentages of MRSA and VRSA isolated from different specimens	68
Fig (4)	Multiplex PCR for detection of vanA and nuc genes	71
Fig (5)	Pattern of RAPD using operon D05 primer for the 15 tested isolates	72
Fig (6)	Pattern of RAPD using operon A 10 primer for the 15 tested isolates	72
Fig (7)	Pattern of RAPD using operon B12 primer for the 15 tested isolates	73
Fig (8)	Pattern of RAPD using operon C 09 primer for the 15 tested isolates	73
Fig (9)	Similarity dendrogram for the 15 strains tested by RAPD	74

LIST OF TABLES

TABLE	CONTENT	PAGE
TABLE (1)	Prevalence of MRSA & VRSA among 220 S. aureus isolates out of 439 collected specimens	65
TABLE (2)	Distribution of MRSA and VRSA isolates among different wards	66
TABLE (3)	Distribution of MRSA and VRSA isolated from different specimens	67
TABLE (4)	Patients' age of MRSA and VRSA isolates	69
TABLE (5)	Patients' gender of MRSA and VRSA isolates	69
TABLE (6)	The antimicrobial susceptibility patterns of the 10 VRSA isolates	69
TABLE (7)	Distribution of the conventional and molecular detected VRSA isolates	75

TABLE OF CONTENTS

CONTENTS	PAGE
INTRODUCTION	1
AIM OF THE WORK	5
REVIEW OF LITERATURE	6
(I) The Staphylococci	6
1- Identification	7
A. Characters of the organisms	7
B. Culture	7
C. Appearance on solid media	8
D. Selective Culture media	8
2- Sensitivity to Antimicrobial Drugs	9
3- Antigenic properties	11

4- Toxins and Enzymes	12
A: Catalase	12
B. Coagulase	12
C. Other Enzymes	13
D. Exotoxins	13
E. Leukocidin	13
F. Exfoliative Toxin	14
G. Toxic Shock Syndrome Toxin	14
H. Enterotoxins	14
5- Virulence Determinants	15
6- Pathogenesis	16
7- Pathology	17
8- Clinical Findings	18

9- Laboratory Diagnosis	19
A. Principle	19
B. Specimens	20
C. Smears	20
D. Culture	20
E. Catalase Test	21
F. Coagulase Test	21
G. Deoxyribonuclease (DNase) production	22
H. Susceptibility Testing	22
I. Typing methods	23
J. Molecular Tests	23
10- Treatment of the infection	24

11- Epidemiology and Control	26
(II) Vancomycin Resistant Staphylococcus aureus (VRSA)	28
1- Definition of Vancomycin Resistance	28
2 - Mechanisms of Vancomycin Resistance	29
3 - Mode of Transmission	31
4 – Risk factors	31
A - Antibiotics administration	31
B - Surgical procedures	32
C - Surgical wounds	32
D - Intravenous catheters	32
E - Intensive care units:	33
F - Duration of hospitalization	33

5- Types of nosocomial VRSA infections	34
A - Surgical Site Infection	34
B - Burn wounds	34
C - Bacteremia	35
D - Pulmonary infections	36
E - Osteomyelitis	37
F - Colonization	37
6 - Infection control	38
A - Infection control of nasal carriage	38
B - Infection control of skin carriage	38
C - Other infection control measures	39
D - Eradication of the carrier state	40
7 - Epidemiology of VRSA	41

8 - Strategy for control of VRSA infection	41
9 - General requirements	42
10 - Genetics of VRSA	43
11 - Typing of VRSA	46
A - Conventional methods	46
B - Genotyping methods	47
i - Plasmid analysis	48
ii - Chromosomal analysis	49
iii – Ribotyping	49
iv - Pulsed-field gel electophoresis	50
v - RAPD (Random Amplification of Polymorphic DNA)	51
MATERIAL AND METHODS	53