# دور الفحص بالتصوير بالاشعة المقطعية المتعددة المقاطع فى تشخيص الاسباب التلقائية للبصق الرئوى المدمم

رسالة توطئة للحصول على درجة الماجيستير في الاشعة التشخيصية

مقدمة من

الطبيبة / هالة عبداللة محمد أحمد بكالوريوس الطب والجراحة

تحت اشراف

الدكتورة/ إيناس أحمد عزب استاذ مساعد الأشعة التشخيصية كلية الطب جامعة عين شمس

الدكتور/ البير وليم عبدة مدرس الأشعة التشخيصية كلية الطب جامعة عين شمس

كلية الطب \_ جامعة عين شمس ٢٠١٠

## Hcknowledgment

It is not easy to acknowledge all who helped me, directly and indirectly with continuous concern that helped me much during preparation of this work.

My profound thanks and appreciation to **Assistant** prof. .DR. Enas Ahamed Azab

Professor of Radiodiagnosis, Ain Shams University, for her endless patience and guidance. This work could not have reached its goal without her support. Starting from the main idea till reaching the final goal, she has stood as the motivating power of each aspect of this study.

I wish to express my thanks to **DR. Albeer William Abdo** Lecturer of Anatomy, Ain Shams

University, for his help and encouragement.

## content

- 1-Radiological Anatomy
- 2- Pathological causes of non traumatic causes of pulmonary haemoptysis
- 3- Technique, Principle of MDCT in chest examination
- 4- MDCT manifestation of non traumatic causes of pulmonary haemoptysis
- 5- Summary and conclusion
- 6- References
- 7- Arabic summary

### List of abbreviations

| <b>2</b> D | Two-Dimensional                       |  |  |
|------------|---------------------------------------|--|--|
| AE         | Automatic exposure control            |  |  |
| C          |                                       |  |  |
| CA         | Computer-aided diagnosis              |  |  |
| D          |                                       |  |  |
| CO         | Chronic obstructive pulmonary disease |  |  |
| PD         |                                       |  |  |
| GE         | General electric                      |  |  |
| НС         | Hydatid cyst                          |  |  |
| MD         | Multi-Detector Computed Tomography    |  |  |
| CT         |                                       |  |  |
| HR         | High resolution computed tomography   |  |  |
| CT:        |                                       |  |  |
| HIV        | Human immunodeficiency                |  |  |
| HU         | House unit                            |  |  |
| Min<br>IP  | Minimum-Intensity Projections         |  |  |

#### Abbreviations

| MI  | Maximum intensity projections         |  |  |  |  |
|-----|---------------------------------------|--|--|--|--|
| P   |                                       |  |  |  |  |
| mm  | Millimeter                            |  |  |  |  |
| MP  | Multi-planar reconstruction           |  |  |  |  |
| R   |                                       |  |  |  |  |
| PAV | Pulmonary Arteriovenous Malformations |  |  |  |  |
| M   |                                       |  |  |  |  |
| mA  | Milli-ampere.second                   |  |  |  |  |
| S   |                                       |  |  |  |  |
| KV  | Kilo-Volt                             |  |  |  |  |
| kW  | Kilo-Watt                             |  |  |  |  |
|     |                                       |  |  |  |  |
| Kvp | Kilovolt Potential                    |  |  |  |  |
| SF  | Scan field of view                    |  |  |  |  |
| OV  |                                       |  |  |  |  |
| SPN | Solitary pulmonary nodule             |  |  |  |  |
| TB  | Tuberculosis                          |  |  |  |  |
| VD  | Volume doubling time                  |  |  |  |  |
| RP  | Right pulmonary artery                |  |  |  |  |
| A   |                                       |  |  |  |  |
| RM  | Right middle lobe                     |  |  |  |  |
| L   |                                       |  |  |  |  |

| Figure   | Title                           | Page   |
|----------|---------------------------------|--------|
| number   |                                 | number |
| Fig (1)  | CT bronchial tree               | 6      |
| Fig (2)  | Bronchopulmonary Segments of    | 12     |
|          | the lung                        |        |
| Fig (3)  | CT Major lung fissure           | 13     |
| Fig (4)  | HR CT of the lung               | 16     |
| Fig (5)  | Lung parenchyma&oblique         | 17     |
|          | fissure                         |        |
| Fig (6)  | Lung in inspiratory&expiratory  | 18     |
|          | scan                            |        |
| Fig (7)  | Lung hilum                      | 20     |
| Fig (8)  | Transverse section of thorax at | 24     |
|          | sixth horacic vertebra          |        |
| Fig (9)  | Basic system component of third | 46     |
|          | generation                      |        |
| Fig (10) | Oblique view of a CT gantry     | 49     |
|          | with an X-ray tube              |        |
| Fig (11) | Equal width & unequal width     | 51     |
|          | detector array designs          |        |
| Fig (12) | Fixed array detector and        | 52     |
|          | adaptive detector               |        |
| Fig (13) | Section collimation in          | 55     |
|          | multidetector row CT            |        |
| Fig (14) | 2-D MPR in lung nodule          | 67     |
|          | dedection                       |        |
| Fig(15)  | Coronal thin-slab (MIP) in a    | 68     |
|          | patient with multiple tiny      |        |
|          | pulmonary metastases            |        |
| Fig(16)  | (MIP) technique in lung nodules | 70     |
|          | detection                       |        |
| Fig(17)  | Coronal VR transverse MIP and   | 72     |
|          | transverse VR of CT in          |        |
|          | metastatic melanoma.            |        |

| Fig(18) | nodule is more easily           | 73 |
|---------|---------------------------------|----|
|         | distinguished from vessels on   |    |
|         | MIP and VR images               |    |
| Fig(19) | CAD of pulmonary nodules        | 75 |
| Fig(20) | peripheral l ung cancer         | 76 |
|         | demonstrated by the             |    |
|         | screenogram                     |    |
| Fig(21) | thin sections CT for assessment | 79 |
|         | of focal lung abnormalities     |    |
|         |                                 |    |
| Fig(22) | MDCT showing Peripheral         | 81 |
|         | bronchial carcinoma             |    |
| Fig(23) | MDCT reveal metastases          | 82 |
| Fig(24) | MDCT Squamous cell              | 83 |
|         | carcinoma                       |    |
| Fig(25) | Bronchoalveolar carcinoma.      | 84 |
|         | MSCT                            |    |
| Fig(26) | MDCT Sub-solid nodules          | 86 |
| Fig(27) | MDCTin lung nodule              | 87 |
| Fig(28) | Nodule calcification patterns   | 88 |
| Fig(29) | MDCT Carcinoid tumor            | 89 |
|         | eccentric dense calcification   |    |
| Fig(30) | MDCT Axial 1.25 mm sections     | 90 |
|         | through a nodule                |    |
| Fig(31) | Type I tumor-bronchus           | 93 |
|         | relationship                    |    |
| Fig(32) | Type II tumor-bronchus          | 93 |
|         | relationship                    |    |
| Fig(33) | Type III tumor-bronchus         | 94 |
|         | relationship                    |    |
| Fig(34) | Type IV tumor-bronchus          | 95 |
|         | relationship                    |    |
| Fig(35) | Type V tumor-bronchus           | 96 |
|         | relationship                    |    |
|         | ·                               |    |

| E: (2.0)  | G 11 : : 1 / MGCT                | 00  |
|-----------|----------------------------------|-----|
| Fig(36)   | Small carcinoid tumor. MSCT      | 98  |
|           | obtained before and 2 minutes    |     |
|           | after intravenous contrast       |     |
|           | administration.                  |     |
| Fig(37)   | Subsolid nodules. MSCT           | 100 |
| Fig(38)   | Thin-section CT scan inTB        | 101 |
| Fig(39)   | MDCTInvasive Pulmonary           | 105 |
|           | Aspergillosis                    |     |
| Fig(40)   | Angioinvasiveaspergillosis       | 106 |
|           | MDCT                             |     |
| Fig(41)   | Multiple cyst of the             | 108 |
|           | lung.                            |     |
| Fig(42)   | coronal reconstruction Multiple  | 108 |
|           | cyst of the lung                 |     |
|           |                                  |     |
| Fig(43)   | primary tuberculosis(MDCT)       | 110 |
| Fig(44)   | HRCT wide-spread small           | 112 |
|           | nodules and ground-glass         |     |
|           | opacification                    |     |
| Fig(45)   | MDCT childhood tuberculosis      | 113 |
| Fig(46)   | pulmonary abscess MDCT           | 114 |
| Fig(47)   | HRCT obliterative bronchiolitis  | 116 |
| Fig(48)   | MDCT cylindrical                 | 119 |
|           | bronchiectasis                   |     |
| Fig(49)   | paddlewheel image                | 121 |
|           | reconstruction in bronchiectasis |     |
| Fig(50)   | MDCT reveals bronchiectasis      | 122 |
| Fig(51)   | Multiplanar reconstructions      | 123 |
| Fig(52)   | CT vascular obstruction index    | 127 |
|           | (VOI)                            |     |
| Fig(53)   | Aspergillus fumigatus            | 128 |
| 3()       | pneumonia                        |     |
| Fig(54)   | MDCT showing Arteriovenous       | 131 |
| 1 -5(5 .) | malformation                     |     |
|           | 11141101111411011                |     |

The Main Development in Computed Tomography in Thoracic imaging have been the introduction of HRCT spiral, volumetric CT and more recently, Multislice CT (MSCT) the introduction of each brought different technique has opportunities undoubtly the most exciting development in CT technology has been the Multislice CT. MSCT permit acquisition shorter time, greater coverage and image resolution (ZA Aziz, etal 2004)

#### **Bronchopulmonary segments:**

The segmental bronchi divide into smaller and smaller divisions until after 6–20 divisions they become bronchioles and no longer contain cartilage in their walls. The bronchioles divide and the last of the purely conducting airways are known as the terminal bronchioles, beyond which lie the alveoli. The walls of the segmental bronchi are invisible on the chest radiograph unless seen end-on, when they may cause ring shadow.

Each lung is divided into lobes surrounded by pleura. There are two lobes on the left: the upper and lower,

separated by the major (oblique) fissure; and three on the right: the upper, middle and lower lobes separated by the major (oblique) and minor (horizontal) fissures. The fissures are frequently, incomplete particularly medially, containing localized defects which form an alveolar pathway for collateral air drift and the spread of disease (*Padley and MacDonald, 2008*).

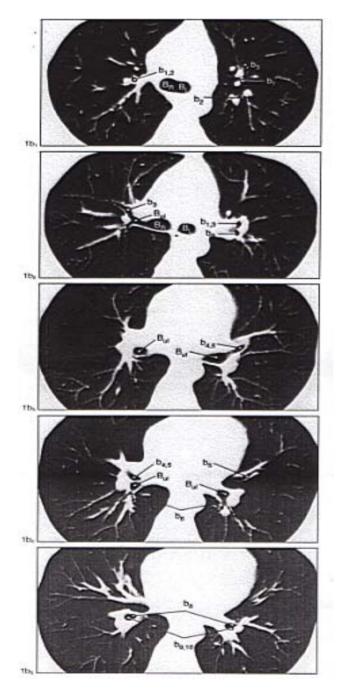



Fig (1): Showing: Normal CT anatomy of the bronchial tree (Quoted from Wegener, 1992).

#### **Segmental Anatomy of the Lung**

Each lobe is comprised of several smaller units referred to as pulmonary segments. Each segment can be named numerically, using an "S", and the same number of the corresponding bronchus that supplies it (*Thompson*, 2004).

#### Right lung segmental anatomy:

#### Right Upper Lobe:

The RUL is comprised of three segments: apical, posterior and anterior. The apical (S1) segment is shaped like a truncated cone with its broadest base located superiorly filling the copula of the lung this segment thus extends over the pulmonary apex but doesn't extend inferiorly to the interlobar (minor) fissure. The posterior (S2) segment extends from the right hilum, posteriorly and inferiorly and forms the posterior half of the interlobar surface relating to the right major fissure. The anterior (S3) segment which is like (S2) extends from the right hilar area is oriented anteriorly and somewhat superiorly. The anterior surface of S3 extends to the chest

wall ventrally, while the broadest inferior surface borders the minor fissure which separates S3 from the right middle lobe (*Thompson*, 2004).

#### Right Middle Lobe:

The RML has two pulmonary segments which are situated side by side; the more lateral (S4) segment approximates the size of its adjacent neighbor, (S5) medial segment. (S5) abuts the right heart border medially while (S4) extends to and comprises a portion of the lateral border of the right lung. Superiorly, both segments border the right minor fissure, and like wise, both abut the major fissure along their inferior margins. Both (S4, S5) touch the diaphragmatic surface at their anterio-inferior edges. Anteriorly, both segments are adjacent to the anterior ribs ends of the 5<sup>th</sup>, 6<sup>th</sup> and 7<sup>th</sup> ribs (*Thompson*, 2004).

#### Right Lower Lobe:

The RLL is comprised of five pulmonary segments: the superior (S6) segment is situated immediately inferior to the posterior segment of the right upper lobe (S2) from

which it is separated by the right major fissure. S6 is bordered by the major fissure anteriorly and comprises a sizable portion of the posterior margin of the right lower lobe superiorly. It is this segment that is surprisingly occupies a sizable area behind the anterior (S3) segment of the RUL. The posterior basal segment (S10) as its name implies occupies the posterior most and inferior most portion of the RLL. As such, it can be best remembered as the pulmonary segment which occupies posterior costophrenic gutter. S10 of the characteristically tends to be the largest segment of the RLL. Immediately anterior to S10 is the medial basal (S7) segment which typically is the smallest pulmonary segment of the RLL. Along its superior margin, S7 forms a portion of the major fissure medially. Inferior to S7 is the anterior basal (S8) segment, which tends to be rather large in size. This segment along with S6 comprises a large portion of the major fissure surface, laterally. S8 resides in a predominantly lateral location having a large peripheral surface. The lateral basal (S9) segment located between S8, S10 (*Thompson*, 2004).