Insulin Resistance in Chronic Hepatitis B virus infection

Thesis

Submitted for Partial Fulfillment of Master Degree in **Internal Medicine**

By

Amira Isaac Samaan

M.B., B.Ch. Ain Shams University

Under Supervision of

Prof. Yehia Mohamed El Shazly

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Prof. Raef Malak Botrous

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Dr. Reham Ezzat Al Swaff

Lecturer of Internal Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2011

مقاومة الإنسولين في الإلتهاب الكبدى الفيروسي المزمن (ب)

رسالة توطئة للحصول على درجة الماجستير في أمراض الباطنة

مقدمة من الطبيبة / أميرة إسحاق سمعان بكالوريوس الطب والجراحة

تحت إشراف الاكتور/ يحيى محمد الشاذلي الأستاذ الدكتورا يحيى محمد الشاذلي

استاد الباطلة العامة كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ رائف ملاك بطرس أستاذ الباطنة العامة والغدد كلية الطب- جامعة عين شمس

الدكتورة/ ريهام عزت الصواف مدرس الباطنة العامة كلية الطب- جامعة عين شمس

> كليـــة الطـــب جامعة عين شمس ٢٠١١

Summary

This study was carried out in the department of internal medicine, Ain Shams University hospital.

50 subjects were included and were divided into two groups: Group (A) 35 patients with chronic hepatitis B virus infection and Group (B) 15 healthy volunteers.

The aim of this study was to determine whether insulin resistance occurs in patients with chronic hepatitis B virus infection.

HOMA insulin resistance index was found to be within normal range among chronic HBV infected patients, and all variables (except serum ALT level) were comparable between patients and control group.

Insignificant differences were found between average weight and overweight chronic HBV infected patients as regards all parameters exploring insulin resistance.

List of Contents

Title	Page No.
List of FiguresList of Abbreviations	<i>ii</i>
Introduction	1
Aim of the work	2
Review of Literature	3
Chapter I: Hepatitis B Virus infection	3
☐ Structure of HBV	4
☐ Life cycle of HBV	7
☐ Transmission of HBV	9
☐ HBV induced inflammatory reaction	12
☐ Clinical picture of HBV infection	13
- Acute hepatitis B	13
- Chronic hepatitis B	14
- Stages of chronic HBV infection	14
☐ Consequences of chronic HBV infection	22
☐ Extrahepatic manifestations of HBV infection	24
☐ Clinical diagnosis	29
- Acute hepatitis B	29
- Chronic hepatitis B	30
❖ Biochemical diagnosis	30
❖ Virological diagnosis	32
❖ Serological diagnosis	33
❖ Histological diagnosis	36

☐ Management of chronic HBV infection	39
- HBV therapies	39
☐ Treatment recommendation for chronic HBV	
infection	46
- HBeAg positive patients	46
- HBeAg negative patients	48
- Patients with cirrhosis	49
☐ Other treatments of HBV	50
Chapter П: insulin resistance and chronic liver disease	54
☐ Insulin resistance	54
☐ Insulin resistance and chronic liver disease	57
☐ Insulin resistance and NAFLD	59
☐ Insulin resistance and cirrhosis	60
☐ Insulin resistance and viral hepatitis	62
- Insulin resistance and HCV	63
☐ Therapeutic strategies for insulin resistance	66
Chapter Ш: insulin resistance and HBV	68
Subjects and methods	72
Results	75
Discussion	84
Summary	89
Conclusion and Recommendations	90
References	91
Arabic Summary	

List of Figures

Fig. No Page I	
Figure (1):	The partially double-strand circular genome of hepatitis B virus: S for the surface gene, C for the core gene, P for the core gene, P for the polymerase gene and X for X gene
Figure (2):	Hepatitis B virus establishes covalently closed circular DNA (cccDNA) as a durable miniature chromosome in the host nucleus and relies on a retroviral strategy of reverse transcription from RNA to negative-strand DNA

List of Tables

Table No.	No. Title Page	
Table (1):	Phases of chronic HBV infection according to different diagnostic tools	21
Table (2):	The serological markers in different phases of HBV infection	36
Table (3):	Ishak Modified HAI (scoring and grading)	38
Table (4):	Comparison between group A (hepatitis B patients) and group B (control) as regard the mean age and BMI	76
Table (5):	Comparison between group A (hepatitis B patients) and group B (control) as regard gender	77
Table (6):	Comparison between group A (hepatitis B patients) and group B (control) as regard different biochemical variables	78
Table (7):	Comparison between average weight and overweight cases (group A), as regard the mean fasting glucose, 2 hours PP, fasting Insulin and HOMA insulin resistance index	79
Table (8):	Comparison between average weight and overweight controls (group B), as regards the mean fasting glucose, 2 hours PP, fasting Insulin and HOMA insulin resistance index	80
Table (9):	Correlation between ALT level, BMI and studied parameters among average weight chronic HBV infected patients	81

Table (10):	Correlation between ALT level, BMI and studied parameters among overweight chronic HBV infected patients	82
Table (11):	Correlation between ALT level, BMI and studied parameters among average weight control subjects	83
Table (12):	Correlation between ALT, BMI and studied parameters among overweight control subjects	84

List of Abbreviations

 $\alpha 1 \text{ ATD}$: $\alpha 1$ antitrypsin deficiency

αFP : Alpha fetoprotein

Akt : Alpha serine/threonine protein kinase

ALT : Alanine transaminase

AMP : Adenosine mono phosphate

AST : Aspartate transaminase

BMI : Body mass indexBUN : Blood urea nitrogen

cccDNA : Covalently closed circular DNA

CD : Cluster of differentiation

CHB : Chronic hepatitis BCHC : Chronic hepatitis CCK : Cretinine kinase

CLD : Chronic liver disease

DCs : Dendritic cellsDM : Diabetes Mellitus

DPP-4 : Dipeptidyl peptidase-4

ELISA : Enzyme linked immune sorbant assay

FFA : Free fatty acids

FSIVGTT: Frequently sampled IV glucose tolerance test

HAI : Histologic activity index

HAV : Hepatitis A virus

HBc Ab : Hepatitis B core antibody

HBe Ab : Hepatitis B envelope antibody

HBe Ag : Hepatitis B envelope antigen

HBV : Hepatitis B virus

HBVsAb : Hepatitis B surface antibody

HBVsAg : Hepatitis B surface antigenHBX : Hepatitis B virus X proteinHCC : Hepatocellular carcinoma

HCV : Hepatitis C virus

HCVAb : Anti hepatitis C virus antibody

HDV : Hepatitis D virus

HIV : Human immunodeficiency virus **HOMA-IR** : Homeostasis Model assessment

IFNs : InterferonsIL : Interleukin

INR : International normalization ratio

IR : Insulin resistance

IRS : Insulin receptor substrates

MHC : Major histocompatibility complex

mRNA : Messenger RNA

MS : Metabolic syndrome

NAFLD : Non alcoholic fatty liver diseaseNAs : Nucleoside or nucleotide analogs

NASH : Non Alcholic Steato Heptitis

NFKB : Nuclear Factor-KappaB

NK : Natural killer cells

OGTT : Oral glucose tolerance test

ORF : Open reading frame

OS : Oxidative stress

PBC: Primary biliary cirrhosis

PCR : Polymerase Chain Reaction

PEG : Polyethylene glycol

PI3K : Phosphatidylinositol- 3-kinase

PPARγ : Peroxisome proliferator activated receptor gamma

PSC: Primary sclerosing cholangitis

PT : Prothrombin time

SOCS3 : Suppressor of cytokine signaling-3 gene

T2DM: Type 2 diabetes mellitus

TGF-β1 : Transforming growth factor-beta 1

Th17 : T helper 17

TNF : Tumor necrosis factorULN : Upper Limit of Normal

USFDA : United States Food and Drug Administration

WBISI: Whole-body insulin sensitivity index

Acknowledgement

Thanks first and last to **God** as we owe to him for his great care, support and guidance in every step in our life.

I would like to express my sincere gratitude to **Prof. Dr. Yehia Mohamed El Shazly,** Professor of internal Medicine, Faculty of Medicine, Ain Shams University who has so kindly supervised my thesis, I am deeply grateful to him for his professional advice, his guidance and support.

I wish also to express my gratitude to **Prof. Dr. Raef**Malak Botrous, Professor of internal Medicine, Faculty of
Medicine, Ain Shams University under his supervision and
kind advice, I had the honor to complete this work.

I am also greatly indebted to **Dr. Reham Ezzat Al Swaff,** Lecturer of internal Medicine, Faculty of Medicine,
Ain Shams University for her enthusiasm and help.

Amira Isaac

Introduction

Incidence of diabetes mellitus in adults with chronic hepatitis B virus infection is four times higher than that in the general population (22.5%) (*Custro et al., 2001*).

Prospective studies have shown that insulin resistance precedes the onset of diabetes by 10-20 years; also the presence of diabetes may be associated with increased rate of progression of fibrosis in patients with chronic hepatitis C and chronic hepatitis B virus infection (*Hui et al.*, 2003).

Patients with chronic hepatitis have impaired glucose metabolism with hyperinsulinemia and insulin resistance, this hyperinsulinemia has been shown to be due to decreased insulin catabolism rather than increased pancreatic insulin secretion (*Greco et al.*, 2002).

Persico et al. (2009) reported higher prevalence of metabolic syndrome and diabetes mellitus in patients with hepatitis C virus than in patients with hepatitis B virus related chronic liver disease.

Recent years have seen numerous studies devoted to the relationship between chronic hepatitis C virus infection and insulin resistance. However no sufficient data are available for the relationship between chronic hepatitis B virus infection and insulin resistance.

Aim of the work

The aim of this study is to determine whether insulin resistance occurs in patients with chronic hepatitis B virus infection.

Hepatitis B Virus Infection

Hepatitis B virus (HBV) infection is highly prevalent worldwide and is a major cause of morbidity and death. Two billion people globally have been infected with HBV, 350 to 400 million are chronic carriers, and tens of millions of new cases occur annually (*Carey*, 2009).

Some individuals can develop acute HBV infection and achieve complete immune clearance of virus, yielding a life-long immunity, while others can develop chronic HBV infection depending on the host immune response. Chronic HBV infection is associated with a wide range of clinical manifestations, from an asymptomatic carrier state with a normal liver histology to severe and chronic liver diseases, including cirrhosis and hepatocellular carcinoma (*McMahon*, 2005).

Geographic Distribution of Chronic HBV Infection:

The global prevalence of HBV varies widely. Regions are divided into areas of low, intermediate, and high prevalence, defined as follows:

High prevalence implies that at least 8% of the population is currently infected. About 45% of the world's population lives in regions of high prevalence. Among this group, early childhood infections are common, with the virus usually transmitted from mother to infant during the perinatal period. These regions include South East Asia, China, the Amazon area, and sub-Saharan Africa (*Heathcote et al.*, 2008).