Comparison of root canal preparation using Two rotary Ni-Ti instruments

(An In Vitro Study)

Thesis submitted to the Faculty of Dentistry, Ain Shams University

For

Partial Fulfillment of Requirements of the Master Degree in Endodontics

By

Aliaa Mohammad Hesham El-Gayar

B.D.S.(Ain Shams University, 2011)

Supervisors

Dr. Ehab El Sayed Hassanein

Professor of Endodontics

Head of the Endodontic department,

Faculty of Dentistry, Ain Shams University

Dr. Shady Ali Hussein

Lecturer, Endodontic department

Faculty of Dentistry, Ain Shams University

Acknowledgement

First and for most, thanks are due to **ALLAH**, the most beneficent and mercifaul.

I would to express my sincerest gratitude to *Prof. Dr. Ehab El Sayed Hassanein*, Professor of Endodontics *and* Head of the Endodontic department ,Faculty of Dentistry, Ain Shams University.The door office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it.

I would also like to express my sincere gratitude and thanks to *Dr. Shady Ali Hussein*, Lecturer in Endodontic department Faculty of Dentistry, Ain Shams University. For his continuous supervision, guidance, encouragement and support.

Finally, I must express my very profound gratitude to my parents and to my husband for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

List of Contents

Introduction	•••••	1
Literature Review	•••••	4
1 .Shaping ability	4	
2. cleaning ability	42	
Aim of the study	•••••	57
Materials and Methods		58
1. Materials	58	
2. Methods	58	
Results	•••••	81
1. Shaping ability	81	
2. cleaning ability	89	
Discussion		96
Summary and Conclusion	•••••	104
References Arabic Summary	••••••	107

List of Figures

Figure 1: Diagram showing	ng Schneider's method for
determination of angle of curvatu	ure59
Figure 2: Digital caliber used to	o place the gutta percha pieces at
3mm intervals from the apex	61
1	
Figure 3:Marks on mesial surf	face of mesial root to determine
levels of gutta puecha	61
Figure 4: Gutta percha attach	ed to the mesial surface of the
mesial root.	
	written by permanent marker on
_	vn and marking the mesiobuccal
canal	62
Figure 6 attaching small piece	ee of wax to the apex to
preserve patency	64
Figure 7 Figure(7): Protaper Go	old prepared teeth in green acrylic
resin.one Gutta percha orient	ed vertically for first group
mold	65
Figure 8. Protaper Gold prepare	ed teeth in green acrylic resin.two
Gutta percha oriented vertically	
- · · · · · · · · · · · · · · · · · · ·	- -

Figure	9. P	rotaper	Unive	rsal p	orepa	red	teeth	in	White	acrylic
resin.	Three	gutta	percha	orie	nted	ver	tically	fo	r thire	d mold.
•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••	• • • • • • • • •	67
Figure	10):	Protape	er Univ	ersal	prepa	ared	teeth	in	White	acrylic
resin.	four	gutta	perch	a o	riente	ed	vertic	ally	for	fourth
mold		•••••		•••••	•••••	••••		•••••	•••••	68
Figure	11.): B1	ock po	ositio	ning	in	the	CB	CT n	nachine.
	•••••	•••••		•••••	•••••			••••		. 69
Figure	<u>;</u>	12:	CI	3CT		im	age		of	the
block	•••••	•••••		•••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	70
Figure	13: E	ndo-mo	otor use	d for	rotati	on r	notior	ı (X-	- SMA	.RT,
Dentsp	ly Ma	illefer,	Ballaigu	ies,S	witze	rlan	d	•••••	•••••	72
Figure	. 14 :pr	otaper (Gold	••••	••••		•••••		•••••	72
Figure	2 15 : Pi	rotaper	univers	al	••••••	•••••	•••••	•••••	•••••	73
Figure	16: F	2 Prota	per Gol	d	•••••	•••••	•••••		•••••	73
Figure	1 7: F2	2 Protap	er Univ	ersal	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	73
Ü			image,					•		rvature.
										entation
_						_	-			

Figure	20 :Di	agram	sho	showing		postinstrumentation		
measure	ment		• • • • • • • •		•••••		75	
Figure	21:Measu	urements	of	mesial	and	distal	dentin	
thicknes	S				• • • • • • •		76	
Figure 2	22 :Under	the analyz	ze me	nu item,	set me	asureme	nts was	
chosen.	Then	the a	ırea	fraction	n ch	neckbox	was	
checke	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	78	
Figure 2	23 : A perir	neter of the	he roo	ot canal v	vas do	ne with	an area	
selection	n tool (pol	ygon sele	ection), follow	ed by	Edit –	→ Clear	
Outside.							78	
Figure 2	24 :Under th	ne image n	nenu i	tem, type	was c	hosen, 8	8-bit.	
This cha	nged the in	nage to gr	ay sca	ıle			78	
Figure	25: Under	the imag	ge me	nu item,	adjust	thresho	old was	
chosen.	Both slide	rs were a	djuste	ed until 1	the rec	uired a	rea was	
automati	ically shade	ed red					79	
Figure 2	26 : Under	the analy	ze me	enu item,	measu	ire was	chosen.	
The obta	ained value	e of area	fracti	on was t	ransfer	red to a	n excel	
sheet to	collect the	data					79	
Figure 2	27 :Stereom	nicroscope	with	digital ca	ımera.		80	
Figure :	28: pre an	d post in	strum	entation	measu	res of a	ingel of	
curvatur	e				. .		81	

Figure 37: Column chart showing the mean	of the friction area
of the debris at different levels of the mesiobi	uccal root canals for
PTU group.	95

List of Tables

Table 1 : Comparative analysis of the mean change in the angle
of curvature between PTG and PTU82
Table 2: Comparative analysis of the mean of centering ratio
between PTG and PTU 84
Table 3: Comparative analysis of the mean centering ratio at
different levels of the mesiobuccal canals for PTG
<i>group</i>
Table 4:Comparative analysis of the mean centering ratio at
different levels of the mesiobuccal canals for PTU
<i>group</i>
Table 5: Comparative analysis of the mean of friction area of the
debris between PTG and PTU90
Table 6: Comparative analysis of the friction area of the debris at
different levels of the mesiobuccal canals for PTG group
93
Table 7: Comparative analysis of the friction area of the debris
at different levels of the mesiobuccal canals for PTU group
95

Introduction

The aim of root canal instrumentation is to create a tapered shape with adequate volume to allow effective irrigation and filling. Many instruments, devices and instrumentation techniques have been recommended but only few seem to be capable of consistently achieving these primary objectives of root canal preparation.

success is dependent upon two major Root canal factors: cleaning and shaping. Proper cleaning is essential in order to provide an adequate seal and to prevent failure. the chemical solutions currently Among used different ofsodium endodontics. concentrations hypochlorite (NaOCl) are the most common and accepted worldwide due to its properties that contribute to effective chemomechanical debridement of the root canal system. NaOCl acts as a lubricant for instrumentation and can flush loose debris from root canals. NaOCl promotes cleaning, dissolves both vital and non-vital tissue and antibacterial action.

The removal of vital and/or necrotic pulp tissue, infected dentine and dentine debris to eliminate most of the microorganisms from the root canal system is still one of the most important objectives during root canal instrumentation. It is believed that from a biologic point of view, the presence of a debris contribute to leakage and it is also a source of nutrients for microorganisms

In severely curved canals, traditional stainless steel instruments often fail to achieve the tapered root canal shapes needed for adequate cleaning and filling.

Recently, beam computed tomography (CBCT) cone was introduced to evaluate not only cross-sections of roots, three-dimensional but also shapes of canals. This innovation achieved because was new hardware and available to evaluate the software were metrical created by CBCT, thus allowing geometrical changes in prepared canals to be determined in more detail.

Several investigations have shown the ability of some new rotary Ni–Ti systems to maintain the original root canal curvature well.

The goal of shaping the canal is to develop a continuously shaped three-dimensional conical form from

the apex of the root to the crown. During shaping, it is critical that the canal anatomy be maintained and tooth structure be conserved.

Review of literature

I. Shaping ability of the canal:

A. Protaper Universal:

Paqué et al⁽¹⁾ Twenty-five extracted human mandibular first molars with two separate mesial root canals were selected. Canals were randomly assigned to one of the two Group experimental groups: 1: Rotary conventional preparation using ProTaper and Group 2: Reciprocate instrumentation with one single ProTaper F2 instrument. Specimens were scanned initially and after root canal preparation with an isotropic resolution of 20 µm using a micro-computed tomography system. The following assessed: changes in dentin volume. parameters were percentage of shaped canal walls and degree of canal transportation. In addition, the time required reach working length with the F2 instrument was recorded.

They found that preoperatively, there were no differences regarding root canal curvature and volume between experimental groups. Overall, instrumentation led to enlarged canal shapes with no evidence of preparation

errors. There were no statistical differences between the two preparation techniques in the anatomical parameters except higher for a significantly transportation caused by the reciprocating file in coronal canal third. On the other hand, preparation was faster using the single file technique. Shaping outcomes with the single-file F2 ProTaper technique conventional ProTaper full-sequence rotary approach were similar. However, the singlefile F2 ProTaper technique was markedly faster in reaching working length

McRay et al (2) compared ProTaper Universal rotary and WaveOne reciprocating files in their transportation centering ability in mesial roots of mandibular molars imaging. Twenty using microCT extracted seven mesial mandibular molars with canals have separate foramina were used. Pre-instrumentation scans of all teeth were taken, canal curvatures were calculated, and the teeth were randomly divided into two groups. It has been found that WaveOne stayed slightly more centered at the 1, 3, and 5 mm levels and ProTaper showed less transportation at the 1 and 3 mm levels. Both file systems proved safe for endodontic instrumentation.