Immunological Profile of Patients with Skeletal Dysplasia and Disproportionate Short Stature

Thesis Submitted for partial fulfillment of the MD Degree in Clinical Pathology

By

Raghda Mohammed Mostafa Ghorab

MB BCh, Ain Shams University M.Sc. Clinical Pathology, Ain Shams University

Under supervision of

Prof. Nahla Mohamed Zakaria Yousef

Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University

Prof. Shams Mohamed Kholoussi

Professor of Clinical and Chemical Pathology,
Immunogenetics Department, Human Genetics & Genome Research
Division, National Research Centre

Prof. Rasha Mohamed Mamdouh Abdo

Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University

Prof. Samia Ali Temtamy

Professor of Human Genetics, Department of Clinical Genetics, National Research Centre

Dr. Doaa Mohamed AbdElAziz

Assistant professor of Clinical Pathology, Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2018

First and Foremost, thanks to "ALLAH" giving me the strength and power to complete this thesis.

I want to express my deep gratitude to Prof. Dr. Nahla Mohamed Zakaria Yousef, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her sincere and diligent supervision through her strict timing, valuable comments and unconditional support which contributed greatly to output this work in this final format.

I am greatly thankful to Prof. Dr. Shams Mohamed Kholoussi, Professor of Clinical Pathology at the Immunogenetics Department, Human Genetics and Genome Research Division, National Research Centre (NRC) for her continuous assistance and sincere effort she dedicated for this work.

I am profoundly indebted to Prof. Dr. Rasha Mohamed Mamdouh Abdo, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her genuine contribution in this work with her time and effort.

A special tribute is dedicated to Prof. Dr. Samia Ali Temtamy, Professor of Human Genetics, Department of Clinical Genetics, National Research Centre for suggesting 'Disproportionate short stature' as a starting point to begin with in the way of revealing Syndromic immunodeficiencies and for her continuous encouragement and meticulous guidance.

I wish to express my appreciation to Dr. Doaa Mohamed AbdEl Aziz, Assistant professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her helpful instructions and intellectual support.

My great thanks are directed to Dr. Haiam Abdel Raouf, Assistant professor at the Immunogenetics Department, NRC and Dr. Alaa Fayez, Researcher at the Department of Molecular Genetics and Enzymology, NRC for their great contribution in the practical part of this thesis. Also, deserved gratefulness is owed to Prof. Dr. Mona Aglan, professor at the Clinical Genetics

Department, NRC and Dr. Ghada Otaify, Researcher at the Clinical Genetics Department, NRC for their clinical guidance with patients.

I wish to acknowledge partial funding supported from STDF project 5253 for supplying Real-time PCR device used in this study and also internal NRC project 11010171 for partially funding chemical kits used in this study.

Finally, words alone cannot express the thanks I owe to my lovely family for their great support to me all through the way.

Raghda Ghorab

LIST OF CONTENTS

Title	page No.
❖ List of Abbreviations	Ī
❖ List of Figures	$\underline{\mathbf{V}}$
❖ List of Tables	<u>VII</u>
❖ Introduction	<u>1</u>
❖ Aim of the work	<u>5</u>
❖ Review of literature	
 Chapter 1: Skeletal dysplasia syndromes with Syndromic immunodeficiency Chapter 2: 	<u>6</u>
Primary Immunodeficiency Disorders;	<u>18</u>
Overview and Laboratory Diagnosis Subjects and Methods	<u>48</u>
❖ Results	<u>66</u>
❖ Discussion	<u>97</u>
❖ Summary	<u>113</u>
❖ Conclusion and Recommendations	<u>117</u>
❖ References	<u>119</u>
❖ Appendices	<u>133</u>
Arabic Summary	_

LIST OF ABBREVIATIONS

Abbrev.	Full term
ACP5	Acid phosphatase 5, tartrate resistant gene
ADA	Adenosine deaminase
AD	Autosomal dominant
AIRE	Autoimmune regulator
AK2	Adenylate kinase
ALPS	Autoimmune lymphoproliferative syndrome
APECED	Autoimmune polyendocrinopathy-candidiasis-
	ectodermal dystrophy
APLAID	Autoinflammation and PLCG2-associated antibody
	deficiency and immune dysregulation
AR	Autosomal recessive
CANDLE	Chronic atypical neutrophilic dermatosis with
	lipodystrophy and elevated temperature
CASP	Caspase
CBC	Complete blood count
CD	Cluster of differentiation
CGD	Chronic granulomatous disease
cj	coding joint
СНН	Cartilage-Hair Hypoplasia
CHARGE	Coloboma, heart defects, atresia choanae, growth
	retardation, genital abnormalities, and ear abnormalities
cm	Centimeter
CTRL	Control
CORO1A	Coronin 1A deficiency
CVID	Common variable immunodeficiency
DBS	Dried blood spot
DCLRE1C	DNA cross-link repair enzyme 1C
DHR	Dihydrorhodamine
DKC	Dyskeratosis Congenita
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetra-acetic acid

Abbrev.	Full term
ESID	European Society of Immunodeficiency Disorders
EVER	Epidermodysplasia veruciformis
FASL	Fas ligand
FILS	Facial dysmorphism, immunodeficiency, livedo and
	short stature
FITC	Fluorescein isothiocyanate
FMF	Familial Mediterranean Fever
FOXP3	Forkhead box protein 3
gDNA	genomic DNA
G6PDH	Glucose-6-phosphate dehydrogenase
Hb	Hemoglobin
HIV	Human immunodeficiency virus
ID	Immunodeficiency
IDR	Immunodeficiency-related
IFN	Interferon
Ig(s)	Immunoglobulin(s)
IPEX	Immunodysregulation polyendocrinopathy enteropathy
	X-linked
ITP	Idiopathic thrombocytopenic purpura
IUIS	International Union of Immunological Societies
IVIG	Intravenous immunoglobulin
JAK3	Janus kinase 3
LIG4	Ligase
LAD	Leukocyte adhesion deficiency
Max.	Maximum
MHC	Major histocompatibility complex
Min.	Minimum
ml	Milliliters
MoAbs	Monoclonal antibodies
MTHFD	Methylenetetrahydrofolate dehydrogenase
MW	Molecular weight
NBS	New born screening
NCBI	National Center for Biotechnology Information
NHEJ1	Nonhomologous end-joining protein 1

Abbrev.	Full term
NK	Natural Killer
NRAS	Neuroblastoma RAS viral oncogene homolog
NRC	National Research Centre
NS	Non-significant
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PE	Phycoerythrin
PHA	Phytohaemagglutinin
PID EC	Primary Immunodeficiency Expert Committee
PIDs	Primary immunodeficiencies
PLAID	PLCG2 associated antibody deficiency and immune
	dysregulation
PNP	Purine nucleoside phosphorylase
PRKDC	DNA-dependent protein kinase Cernunnos
PTPRC	Protein tyrosine phosphatase receptor type C
RAG	Recombination-activating gene
RMRP	Mitochondrial RNA-processing endoribonuclease gene
RNase P	Ribonuclease P
RNU4ATAC	small nuclear RNA, U4, AT-AC form gene
rpm	Revolutions per minute
rs	Correlation coefficient
S	Significant
SAC	Staphylococcus aureus Cowan antigen
SCID	Severe combined immunodeficiency
SD	Standard deviation
SEMD	Spondyloepimetaphyseal Dysplasia
SIOD	Schimke Immunoosseous Dysplasia
sj	Signal Joint
SLE	Systemic lupus erythematosus
SMARCAL1	SWI/SNF related, matrix associated, actin dependent
	regulator of chromatin, subfamily A-like1 gene
SMD	Spondylometaphyseal dysplasia
SPENCDI	Spondyloenchondrodysplasia with Immune
	Dysregulation

Abbrev.	Full term
SPSS	Statistical Package for Special Sciences
SPUR	Serious, Persistent, Unusual (pathogens or site) and
	Recurrent
ST	Standard
TCL	T cell lymphopenia
TCR	T cell receptor
TCR-δ	T cell receptor delta
TREC	T-cell receptor excision circle
TSH	Thyroid stimulating hormone
VDJ	variable, diversity and joining
VODI	Hepatic veno-occlusive disease with immunodeficiency
WAS	Wiscott Adrich Syndrome
WB	Whole blood
WBCs	White blood cells
WHIM	Warts, Hypogammaglobulinemia, Immuno-deficiency
	and Myelokathexis syndrome
WHO	World Health Organization
αβ-ΤСR	alpha/beta T cell receptor
δREC	Delta recombination element
δREC-ψJα	Delta-Rec and psi-Joining segment-alpha Tcell receptor
TREC	excision circle

LIST OF FIGURES

Figure No	Title	Page No
Fig. (1)	Depressed nasal bridge	13
Fig. (2)	Bulbous nasal tip	13
Fig. (3)	Flat face	14
Fig. (4)	High anterior hair line	14
Fig. (5)	Patients with Sponastrime dysplasia	15
Fig. (6)	Brachydactyly	16
Fig. (7)	Fifth finger clinodactyly	16
Fig. (8)	Percentage distribution of primary immunodeficiency	25
	disorders by different categories in Middle Eastern	
	countries with high consanguinity compared to the registry	
	of the ESID	
Fig. (9)	General clinical course of primary immunodeficiencies and	28
71 (10)	different approaches in establishment of the diagnosis	2.5
Fig. (10)	Recombination processes leading to signal Joint (sj) TREC	35
T: (11)	formation	20
Fig. (11)	An algorithm of TREC analysis for NBS for SCID	39
Fig. (12)	Nephelometry	53
Fig. (13)	The principle and the basic components of flow cytometer	55
Fig. (14)	QIAamp DNA Blood Mini Kit Spin column extraction	60
T) (15)	procedure	72
Fig. (15)	Box-Plot chart showing TRECs/µl DNA in control age	73
F: (16)	groups	7.4
Fig. (16)	Box-Plot chart showing TRECs/ml WB in control age	74
	groups	
Fig. (17)	Box-Plot chart showing log TRECs/ml WB in control age	74
	groups	
Fig. (18)	Patient (A) showing short limbed dwarfism with relatively	77
	shorter lower limbs	
Fig. (19)	Radiography showing mushroom shape appearance of	77
	metaphysis (A), absent carpal bones (B), thin narrow ribs	
	(C) and platyspondyly (arrow)	
Fig. (20)	Patient (B) showing depressed nasal bridge, bilateral	79
	epicanthal folds and long philtrum (a). Disproportionate	
71 (21)	dwarfism is also illustrated (b)	5 0
Fig. (21)	Radiography showing wormian skull bones (A),	79
	metaphyseal cupping and widening (B)	

Figure No	Title	Page No
Fig. (22)	Flow cytometric result of CD19 of patient (B)	80
Fig. (23)	Flow cytometric result of CD19 of a control in the same age group as patient (B)	80
Fig. (24)	Patient (F) showing short limbed dwarfism with significantly shorter lower limbs, camptodactyly and arachnodactyly	81
Fig. (25)	Radiography of patient (F) showing characteristic bowing of upper and lower limbs	81
Fig. (26)	Patient (M) showing disproportionate short limbed dwarfism with relatively shorter lower limbs	82
Fig. (27)	Radiography showing bilateral hip dislocation and bilateral bowed femur	82
Fig. (28)	Patient (J) showing disproportionate short limbed dwarfism (a), decreased height of vertebral bodies (b), epiphyseal dysplasia with mushroom like metaphysis (c&d) and absent carpal bones (d)	84
Fig. (29)	Patient (O) showing disproportionate short limbed dwarfism (a), bowing of radii and femora with metaphyseal dysplasia (b&c)	85
Fig. (30)	Patient (P) showing disproportionate dwarfism, facial asymmetry and bilateral mesomelia	86
Fig. (31)	Radiography of patient (P) showing metaphyseal widening and bowing in left femur, bilateral bowing of both radii	86
Fig. (32)	Patient (V) showing disproportionate short limbed dwarfism and right sided genu valgus (a), radiography showing bilateral bowing of tibia and fibula with metaphyseal widening and mild epiphyseal irregularity (b), hand x-ray showing cupping and fraying of carpal and metacarpal bones (c), dysplastic changes in lower thoracic and lumber vertebrae (d) and skull x-ray showing wormian bones (e)	88
Fig. (33)	Patient (Y) showing disproportionate dwarfism (a), Radiographic survey showed shortening of long bones with metaphyseal widening (b&c) and platyspondyly (d)	89

LIST OF TABLES

Table No	Title	Page No
Table (1)	Syndromic immunodeficiency with skeletal dysplasia	9
Table (2)	Primary immunodeficiencies associated with epiphyseal and metaphyseal dysplasia	10
Table (3)	The 10 warning signs of primary immune deficiency in children	26
Table (4)	Immune deficiency disease related (IDR) score	27
Table (5)	Immunophenotypic findings with correlated genetic defects in SCID	32
Table (6)	Main clinical and laboratory findings of immune dysregulation syndromes and causative genes	43
Table (7)	Laboratory tests of immune function	47
Table (8)	Haematological values for normal infants	52
Table (9)	Haematological values for normal children	52
Table (10)	Normal range of IgG, IgA and IgM compared with age	54
Table (11)	Sample real time PCR plate	62
Table (12)	Volume of reagents needed for indicated wells	63
Table (13)	Sequence of primers and probes for the real time PCR assay	63
Table (14)	Comparison between patients and controls regarding age	66
Table (15)	Comparison between patients (n=25) and controls (n=20) regarding sex	67
Table (16)	Perinatal risk factors among patients	67
Table (17)	Initial manifestation of PID in the studied patients	68
Table (18)	Consanguinity rates among whole study population (n=45), control group (n=20), all patients with skeletal dysplasia (n=25) and patients with syndromic immunodeficiency (n=9)	68
Table (19)	Degree of consanguinity in those who are consanguineous (n=18)	69
Table (20)	Comparison between consanguinity rates among patients with skeletal dysplasias and the control group	69
Table (21)	Comparison between consanguinity rates among patients with syndromic immunodeficiency and the control group	69
Table (22)	Paternal age of patients enrolled in the study	70

Table No	Title	Page No
Table (23)	Pattern of inheritance and presence of affected sibling among skeletal dysplasias (n=25) and syndromic immunodeficiencies' patients (n=9)	70
Table (24)	Comparison between controls of group 1 (n=9) and group 2 (n=11) regarding the different laboratory parameters	72
Table (25)	Comparison between patients with syndromic immunodeficiency (n=5) and controls from 0-3 years (n=9) regarding studied laboratory parameters	90
Table (26)	Comparison between patients with syndromic immunodeficiency (n=4) and controls from >3-15 years (n=11) regarding studied laboratory parameters	92
Table (27)	Correlation between clinical immune manifestation of PID and laboratory presence of Immune Defect	93
Table (28)	Correlation between age and measured laboratory parameters in controls	94
Table (29)	Multiple regression analysis between age, absolute lymphocyte count, CD3% and absolute CD3 as predictor variables and TRECs/µl DNA as dependent variable	95
Table (30)	Multiple regression analysis between age, absolute lymphocyte count, CD3% and absolute CD3 as predictor variables and TRECs/ml WB as dependent variable	95
Table (31)	Multiple regression analysis between age, absolute lymphocyte count, CD3% and absolute CD3 as predictor variables and Log TRECs/ml WB as dependent variable	96

INTRODUCTION