

Epidemiological pattern of ocular trauma (Retrospective study)

Thesis

Submitted for partial fulfillment of the M.sc Degree in Ophthalmology

By Ahmed Mohamed Ahmed Mostafa

(M.B.B.CH, Cairo University)

Supervised By

Prof. Dr. Magda Salaheldin Abdelaziz

Professor of Ophthalmology Faculty of Medicine Cairo University

Prof. Dr. Gihan Helmy

Professor of Ophthalmology Faculty of Medicine Cairo University

Dr. Maha Mohamed Youssef

Lecturer of Ophthalmology Faculty of Medicine Cairo University

Faculty of Medicine Cairo University (2010)

Abstract

PURPOSE: To review the epidemiology of serious ocular trauma presenting to Kasr El Aini Hospital, Cairo University.

METHODS: This is a retrospective epidemiological study of ocular trauma patients admitted to Kasr El Aini hospital during a one-year period (2008). Cases were analyzed with respect to: (1) demographics, (2) time, place, activity during trauma and cause of trauma, (3) examination finding.

RESULTS: five hundred and ten patients (five bilateral injuries) sustaining serious ocular injury requiring hospitalization were included during the study period. 65.5% of ocular trauma occurred in men (P < 0.001 chi-square test) with an average age of 23 years (ranging from 2 months to 65 years). There were 415 (81.3%) open globe injuries and 95 (18.7%) closed globe injuries. In open globe injuries, it is shown that 40% had corneal wound, 6.6% had limbal wound, 24% had scleral wound, 27.8% had corneoscleral wound, 37% had iris prolapse, 20.5% had traumatic hyphema, 29.4% had traumatic cataract, 9.8% had IOFB. **CONCLUSION:** The majority of ocular trauma in our population was due to violence related injuries occurring mainly in males.

Key Words:

Mechanical eye trauma, Non mechanical eye trauma, Standardized classification of ocular trauma, Frequency, consequence of ocular trauma

<u>ACKNOWLEDGEMENT</u>

I would like to express my sincere gratitude and thanks to *Prof.* **Dr.Magda Salaheldin Abdelaziz,** Professor of ophthalmology, Cairo Faculty of Medicine, whose guidance, help and sincere supervision were the cornerstone in building up this work. She kindly supervised all of details of this work, and revised all the work throughout its various steps. She offered me much of here help for unlimited experience in this work.

I would like to thank *Prof.Dr*. **Gihan Helmy**, Professor of ophthalmology, Cairo Faculty of Medicine, for here great help, encouragement, and constructive advice. She kindly offered much guidance, patience and supervised details of this work and revised all the work.

I also wish to thank *Dr.Maha Mohammed Youssef*, lecturer of ophthalmology, Cairo Faculty of Medicine, for here constant supervision, sincere advise and guidance.

Ahmed mostafa

List of abbreviations

A.C	Anterior Chamber
(Ca [OH] ²	Lime(calcium hydroxide)
C.B	Ciliary body
CF	Counting finger
CME	Cystoid macular edema
СТ	Computed tomography
DM	Descemets membrane
ER	Emergency room
EPD	Eye protective device
FTMH	Full thickness macular hole
(HCl)	Hydrochloric
(HF)	Hydrofluoric
НМ	Hand movement
(H ₂ SO ₃)	Sulfurous
(H ₂ SO ₄)	Sulfuric
(КОН)	Potassium hydroxide
IOFBs	Intraocular foreign bodies
IOP	Intraocular pressure
P value	Probability value
PH	Potential of hydrogen
P.K	Penetrating keratoplasty
PL	Perception of light
1	•

PVR	Proliferative viteroretinopathy
Mg[OH] ²	Magnesium hydroxide
mmHg	Millimeters of mercury
MVCs	Motor vehicle cars
MRI	Magnetic resonance imaging
(NH ₃)	Ammonia
Nd:YAG	Neodymium :yttrium aluminum garnet
RAPD	Relative afferent pupillary defect
RBCs	Red blood cells
RD	Retinal detachment
RPE	Retinal pigment epithelium
TON	Traumatic optic neuropathy
U.V energy	Ultraviolet energy

List of figures

No.	Title	Page
1	Subconjunctival hemorrhage	4
2	Extensive subconjunctival hemorrhage	4
3	Fluorescein staining of an epithelial defect	7
4	Corneal foreign body imbedded in the midcorneal stroma	9
5	Iris prolapse through limbal wound	10
6	Corneoscleral laceration at presentation	10
7	Rebleeding in a patient with traumatic hyphema. Note fresh	14
	Red blood layered over a darker clot	
8	Corneal blood staining	15
9	Aniridia as a result of severe contusion injury	17
10	Choroidal rupture	18
11	Traumatic cataract and iridodialysis	20
12	Commotio Retinae	22
13	Traumatic macular hole	23
14	Intraocular foreign body	27
15	Left orbital blow out fracture with restrictive elevation	30
16	Orbital hematoma with bloody chemosis, proptosis, pain, and loss of vision	33
17	Optic nerve avulsion with retinal hemorrhage	34
18	Repaired corneal laceration with hypopyon	38

No.	Title	Page
19	Severe alkali injury	40
20	Acid injury caused by exploding car battery	40
21	Classification of ocular trauma	45
22	Age and sex distribution of patients with ocular trauma	53
23	Number of patients involved according to different occupation	55
24	Correlation between place of trauma and geographical distribution.	60
25	Correlation between place of trauma and gender.	63
26	Correlation between activity at time of trauma and gender.	66
27	Different types of blunt objects causing ocular trauma	67
28	Different types of sharp objects causing ocular trauma.	68
29	Different types of open globe injuries in males and females	71
30	Distribution of different types of closed globe injuries in males and females	73

List of tables

No.	Title	Page
1	The grading of hyphema based on how much of the AC is filled with blood	11
2	Management strategy for eyes with traumatic cataract	21
3	Selected primary and secondary consequences of an IOFB injury	26
4	Age and sex distribution of patients with ocular trauma	53
5	The different percentage of the different important occupations	55
6	Geographical distribution of patients with ocular trauma in area of Greater Cairo admitted at Kaser El Aini	56
7	The various percentages of patients with ocular trauma coming from different areas from Upper Egypt	57
8	The various percentages of patients with ocular trauma coming from different areas from Lower Egypt	58
9	The various percentages of patients with ocular trauma coming from others areas	58
10	Correlation between place of trauma and geographical distribution	60
11	Time of presentations of patients with ocular trauma	61
12	Correlation between place of trauma and gender	63

13	Correlation between activity at time of trauma and gender	65
14	Different types of blunt objects causing ocular trauma	67
15	Different types of sharp objects causing ocular trauma	68
16	Gunshots trauma	68
17	Distribution of different types of open globe injuries in males and females	70
18	Distribution of different types of closed globe injuries in males and females	72

Content

I-Introduction	1	
II-Aim of work 2		
III-Review of literature	3	
A-Mechanical eye trauma		
1. Conjunctival injuries	3	
2. Corneal injuries	6	
3. Scleral injuries	11	
4.Traumatic hyphema	11	
5. Iris injuries	17	
6. Ciliary body and choroidal injuries	18	
7. Lens injuries	19	
8. Injury to vitreous and retina	21	
9. Intraocular foreign bodies	25	
10. Perforating injuries	28	
11. Orbital trauma	29	
12. Injury to visual pathway	33	
13. Traumatic endophthalmitis	37	

B.Non mechanical eye trauma	39	9
1.Chemical injuries	3	9
2. Electrical trauma	4	1
3. Photic trauma	4	12
C.Standardized classification of ocular trauma	. 43	
D.Frequency, consequence of ocular trauma	. 46	
IV-Patients and methods	49	
V- Results	52	
VII - Discussion	75	
VIII-Conclusions and Recommendation	89	
X - Summary	92	
IX- References	94	

Introduction:

Worldwide interest in the field of ocular trauma is rapidly growing as increasingly effective techniques for prevention and treatment are developed. Ocular trauma are often disabling and create enormous costs to both the victim and society. Ocular trauma is a major cause of monocular blindness and visual impairment throughout the world, although little is known about its epidemiology or associated visual outcome in developing countries (Smith and Gole, 2006).

Although the eyes represent only 0.1% of the total body surface and only 0.27% of the anterior body surface their significance to individuals and society is disproportionally higher. Luccheta (2001) reported that, the eyes are in third place, after hands and feet, among the most frequently involved anatomical region. Consequently, the socioeconomic impact of ocular trauma can hardly be overestimated. Those affected often have to face loss of career opportunities, major lifestyle changes, and occasionally Permanent physical disfigurement (Luccheta, 2001).

Data collection is the initial step in any epidemiological study. Once a sufficient amount of information is available on how injuries occur (to whom, how, where, when, etc), prophylactic measures can be planned and implemented. The continued collection in a standardized fashion of epidemiological information helps to determine whether a certain preventive measure was effective or not (**Kuhn et al, 2002**).

Aim of work:

- Define population at risk.
- Identify activity at time of trauma, causes, and types of trauma.
- Identify the extent of ocular trauma.

The lack of a common language has always been an obstacle in effectively sharing eye injuries information. For instance, varying responses are given to simple question as; what is the distinction between laceration, rupture, penetration and perforation? By always using the entire globe as the tissue of reference, the classification of ocular trauma is clear, consistent, and simple. It provides definitions for the commonly used eye trauma terms within the framework of a comprehensive system (**Kuhn et al, 2002**).

Despite a growing interest in eye injuries, the absence of a common language continues to impede both clinical care and research. Ocular trauma is a global health problem .It is defined as a result of mechanical or non mechanical injury to the eye (Morris et al, 2003).

*Mechanical eye trauma:

1) Conjunctival injuries:

•Subconjunctival Hemorrhage:

It appears as a bright red patch of conjunctival tissue with distinct or feathered borders, fig (1). If severe, the conjunctiva may prolapse through the palpebral fissure; the entire bulbar conjunctiva may be involved, fig (2). Generally resolving spontaneously in 7 to 10 days, its color evolves from bright red to yellow green. Occasionally, when the hemorrhage involves the perilimbal conjunctiva, blood breakdown products can be seen in the anterior peripheral corneal stroma as a greenish discoloration. The management of a traumatic subconjunctival hemorrhage must be ensured that the hemorrhage does not indicate or conceal a deeper or more extensive injury (Lee and Naor, 2003).

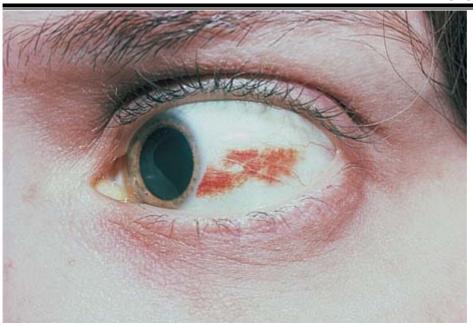


fig. (1): subconjunctival hemorrhage (Lee and Naor, 2003).

fig. (2): Extensive subconjunctival hemorrhage (Lee and Naor, 2003)