STROMAL MAST CELLS IDENTIFICATION IN INVASIVE BREAST CARCINOMA (IMMUNOHISTOCHEMICAL AND CYTOLOGICAL STUDY)

THESIS

Submitted in Partial Fulfillment of the Requirement of the M.D Degree in Pathology

By

Lubna Omar El Farouk Abdel-Salam

M.B.B.Ch., M.Sc.

Faculty of medicine, Cairo University
Supervised by

Prof. Dr. Abdallah Mahmoud Khalil

Professor & Former Head of Pathology Department Faculty of medicine, Cairo University

Prof. Dr. Essam Ezzat Ayad

Professor of Pathology
Faculty of medicine, Cairo University

Dr. Samar Abdel-Moniem El- Sheikh

Lecturer of Pathology
Faculty of medicine, Cairo University

Faculty of Medicine Cairo University

2011

Acknowledgment

I would like to express my sincere gratitude to my dear **Professo Dr.**Abdallah Mahmoud Khalil professor, and previous head of pathology department, Cairo University, his kind guidance and encouragement, stimulating suggestions, notable contributions and valuable advice throughout the work. His generous and continuous efforts were indespensible for me.

I am also greatly indebted to **Professor Dr. Essam Ezzat Ayad** professor of pathology, Cairo University who devoted a great deal of his time to achieve meticulous revision and clarify various points that were so valuable and helpful to me. His observations and thought have greatly assisted and encouraged me.

I would like to sincerely thank Dr. Samar Abdel-Moniem El-Sheikh lecturer of pathology, Cairo University, for her friendly attitude, great help, co-operation and strong effort to make best of this work. She constantly supported me with her kind aid and important remarks.

Many thanks to all of my professors and colleagues who contributed to this work, whether with technical assistance, an advice, an idea, a book or even a simple word of encouragement.

Finally, I thank and dedicate this work to my loving parents, whose support is of inestimable value

ABSTRACT

Introduction: Breast cancer is the most frequent malignant tumor of women worldwide, with increasing incidence rates. The assessment of prognostic factors, in order to provide a prediction of outcome, has become an essential part of the histopathologist's role in the handling and histological reporting of invasive breast carcinomasThe role of the immune system during cancer development is complex involving extensive reciprocal interactions between genetically altered cells, immune cells, and the neoplastic microenvironment .Studies on the role of mast cells in cancer have given contrasting results, research on breast cancer was specifically of importance, because some aspects of its carcinogenesis, such as the diversity of the hormonal component, differ greatly

Material & methods: Fifty cases of breast cancer were collected randomly as tissue sections and cell block prepared material. The cases were stained by Haematoxylin and Eosin, ckit (CD 117) immunostaining and toluidine blue special stain for mast cells detection followed by their quantitative evaluation.

Results: The majority of cases presented in the age group 41-50 years representing (36%) of the total count of cases. This study revealed that the most common type was invasive duct carcinoma NOS representing (84%) of the cases. Most were those with maximal dimension were within the range between 2cm up to less than 5 cm compromising (68%) of cases, the majority of cases the majority of cases (62%), showed positive nodal status. No statistical correlation was found between mast cells and clinicopathological factors of breast cancer. On the other hand, there was significant correlation between nuclear grade and ckit (CD117) expression.

Key words: Breast Carcinoma, Mast cells, ckit, Toluidine-blue

CONTENTS

ITEM	PAGE
INTRODUCTION	
AIM OF THE STUDY	
REVIEW OF LITERATURE	
*Epidemiology	
*Aetiology&risk factors	
*Classification	
Invasive Ductal Carcinoma Not Otherwise Specified(NOS)	
Invasive Lobular Carcinoma	
Inflammatory Carcinoma	
Other Rare Types	
* Prognostic Factors	
Traditional morphological factors	
Tumor grade	43
Tumor size	43
Tumor histological type	44
Lymph node stage	46
Lymphovascular invasion	48
Miscellaneous factors	49
Hormone receptors	51
Molecular markers	52
*Early Detection	

Contents

* Tumor Microenvironment	
* Mast Cells	57
Mast Cells Biology	57
Detection of mast cells	59
Role of mast cells in tumorogenesis	60
Mast cells with tumorogenesis	61
Mast cells against tumorogenesis	64
Mast cells and breast cancer	67
MATERIAL & METHODS	
RESULTS	72
DISCUSSION	100
SUMMARY	107
CONCLUSIONS & RECOMMENDATIONS	
REFERENCES	111
ARABIC SUMMARY	

LIST OF TABLES

TABLE	ITEM	PAGE
(1)	World Health Organization (WHO,2003) histologic classification of tumors of the breast	21
(2)	Prognostic factors in breast cancer	42
(3)	Nottingham grading system for breast cancer	44
(4)	Prognostic groups according to histological type	45
(5)	TNM Classification for Breast Cancer from the AJCC Cancer Staging Manual, 6th Edition	47
(6)	Mast cell mediators	65
(7)	Age group versus nodal status in the studied cases	78
(8)	Age group versus necrosis in the studied cases	79
(9)	Age group versus ckit immunostaining in the studied cases	80
(10)	Age group versus mast cells in the studied cases	81
(11)	Type versus nodal status in the studied cases	82
(12)	Type versus ckit immunostaining in the studied cases	83
(13)	Type versus mast cells in the studied cases	84
(14)	Mast cells versus ckit immunostaining in the studied cases	85
(15)	Mast cells versus tumor necrosis in the studied	86
(16)	Mast cells versus nodal status in the studied cases	87
(17)	Grade versus stromal mast cells in the studied cases	88
(18)	Grade versus ckit immunostaining in the studied Cases	89

LIST OF GRAPHS

GRAPH	ITEM	PAGE
(1)	Age frequency in breast cancer cases	72
(۲)	Sex distribution in the studied cases	73
(٣)	Frequency of histological types in the studied cases	73
(٤)	Categorization according to grade in the studied cases	74
(0)	Frequency according to maximal dimension of studied cases	74
(7)	Categorization according to nodal status in the studied cases	75
(Y)	Frequency of intraductal component in the studied cases	75
(^)	Frequency of tumor necrosis in the studied cases	76
(9)	Mast cells scoring in the studied cases	76
(10)	ckit immunoreactivity in the studied cases	77

LIST OF FIGURES

FIGURE	ITEM	PAGE
(1)	Invasive duct carcinoma grade II(H&E x100).	90
(٢)	Invasive duct carcinoma grade II, stromal mast cells (toluidine blue x200).	90
(*)	Invasive duct carcinoma, prominent intraductal component (H&E x100).	91
(٤)	Invasive duct carcinoma, with prominent intraductal component(ckit x100).	91
(°)	Invasive duct carcinoma with wide micropapillary features (H&E x100).	92
(٢)	Mucinous carcinoma (H&E x100)	92
(^V)	Atypical medullary carcinoma (H&E x200)	93
([^])	Atypical medullary carcinoma (toluidine blue x100).	93
(٩)	Invasive duct carcinoma grade III (H&E x400).	94
$(1 \cdot)$	Tumor positive strong immunoreactivity (ckit x100).	94
(11)	Invasive duct carcinoma with wide tubular features (H&E x100).	95
(11)	Invasive lobular carcinoma (H&E x100).	95
(17)	Tumor embolus (H&E x100).	96
(14)	Tumor embolus (ckit x200).	96
(10)	Mast cells , intact form. (toluidine blue x200).	97
(17)	Mast cells , degranulated form.(toluidine blue x200).	97
(1)	Tumor with negative immunostaining (ckit x200).	98
(1)	Tumor with negative immunostaining (ckit x200).	98
(19)	Mast cells, high power view (toluidine blue x400).	99
(20)	Cell block, positive immunostaining, low power (ckit x40).	99

LIST OF ABBREVIATIONS

AJCC: American Joint Committee on Cancer

ASR: Age-Standardized Incidence Rates

ATM: Ataxia Telangiectasia mutant gene

BBD: Benign Breast Disease

BMD: Bone Mineral Density

BRCA1: Breast Cancer Gene 1

BRCA2:Breast Cancer Gene 2

ESR1: Estrogen receptor alpha gene

FDA: Food and Drug Administration

GCDFP-15: Gross Cystic Disease Fluid Protein-15

HER2: Human Epidermal Growth Factor Receptor 2

HRT: Hormone replacement therapy

IGF-I: Insulin-Like Growth Factor-1

MECC: Middle East Cancer Consortium

OCs: Oral contraceptive pills

PTEN: Phosphate and Tensin homology

TAA: Tumor-Associated Antigen

TAMs: tumorassociated macrophages

TDLU: Terminal Duct-Lobular Unit

WHO: World Health Organization

Introduction

INTRODUCTION

Breast cancer is the most frequent malignant tumor of women worldwide, with increasing incidence rates. The most widely cited reason for the global increase in breast cancer is the "Westernization" of the developing world (American Cancer Society, 2007).

The assessment of prognostic factors, in order to provide a prediction of outcome, has become an essential part of the histopathologist's role in the handling and histological reporting of invasive breast carcinomas(Fodor, 2007).

Standard treatment modalities have improved the overall outlook and quality of life for women with breast cancer; however, the fact that 40% still succumb to disease highlights the need for new prognostic indicators and therapeutic approaches (**DeNardo & Coussens, 2007**).

The role of the immune system during cancer development is complex involving extensive reciprocal interactions between genetically altered cells, adaptive and innate immune cells, their soluble mediators and structural components present in the neoplastic microenvironment

(De Visser & Coussens, 2006).

The accumulation of mast cells has been associated with enhanced growth and invasion of several human cancers, by several mechanisms as promoting tumor angiogenesis (**Ribatti** *et al.*, **2001**).

On the other hand, mast cells infiltration has been associated with good prognosis in some types of cancer, as breast cancer. This may be related to many factors, as secreting large numbers of amines that may influence breast

carcinoma cells to invade and metastasize, or possibly by producing products as interleukin-4 that may induce apoptosis of the breast cancer cells (**Dabiri et al., 2004**).

Therefore, as studies on the role of mast cells in cancer have given contrasting results, research on breast cancer was carried out in order to contribute to the clarification of their role. Breast cancer was specifically of importance, because some aspects of its carcinogenesis, such as the diversity of the hormonal component, differ greatly (**Rovere** *et al.*, **2007**).

Detection of mast cells can be undergone by various staining techniques and immunohistochemical methods. Cytoplasm of mast cells contains granules (metachromatic) composed of heparin and histamine. Toluidine blue should stain mast cells red-purple (metachromatic staining) and the background blue (orthochromatic staining). Immunohistochemistry can be applied by using antibody to cKIT (CD117), a transmembrane tyrosine kinase acting as a type III receptor for MC growth factor (**Liu et al., 2002**).

Aim Of The Study

AIM OF THE STUDY

*Collection of a random number of invasive breast cancer cases, with their full clinical and histopathological data including age, tumor size, grade, histological subtype, nodal status, and others.

*Studying the cases prepared as formaline fixed paraffin embedded (FFPE) primary tumor samples, as well as cytology samples obtained from fresh specimens with paraffin blocks processing.

*Detection of mast cells within breast stroma using toluidine blue and cKIT antibody, and their quantitative evaluation.

*Correlation between presence or absence of stromal mast cells and their quantity if present, to other clinical and pathological features, and to prove or disprove their prognostic significance.

Review Of Literature