RETROSPECTIVE DEMOGRAPHIC ANALYSIS OF SICKLE CELL DISEASE ON PEDIATRIC PATIENTS

THESIS

SUBMITTED FOR PARTIAL FULFILLMENT OF

MASTER DEGREE IN PEDIATRICS

By: SHAIMAA FARRAG MAHMOUD

M.B.B.CH

Supervised by Prof. Dr NORMEEN ABD EL HALIM KADDAH

Professor of pediatrics

Head of Hematology and Bone marrow transplantation unit Cairo University

Prof. Dr MONA HASSAN Abu El ELA

Professor of pediatrics

Cairo University

Dr. Mona Kamal EL-Ghamrawy

Lecturer of pediatrics

Cairo university

Acknowledgment

First and foremost, thanks to God, to whom I relate my success in achieving any work in my life.

No words can fulfill the feeling of gratitude and respect I carry to **Prof. Dr NORMEEN ABD EL HALIM KADDAH**, professor of Pediatric, for giving me the honor of working under her supervision, for her valuable help, continuous guidance and indispensable direction. I was really honored to work under her kind supervision.

Words fail to express my sincere gratitude and thanks to **Prof. Dr. MONA HASSAN ABU EL ELA**, professor of pediatric, who sacrified a great deal of her valuable time and experience to guide me through the whole work.

I am deeply indebted to **Dr. Mona Kamal EL-Ghamrawy**, lecturer of pediatric, who devoted to me a lot of effort and care, for her supervision, precious advice and great help, she offered to me.

Finally, I would like to express my appreciation and gratitude to my parents, and husband for their encouragement and support.

Shaimaa farrag

2009

Abstract

The objective: This was a retrospective study of demographic data of sickle cell anemia patients attending Haematology outpatient clinic of new children Hospital, Cairo University.

The subjects and methods: Our data collected from medical records, this included clinical ,laboratory data & different treatment modalities. studied population consisted of all SCD patients who attending & following up at hematology outpatient clinic ,new children hospital, Cairo university. The data was retrospectively collected.

The results: we show retrospective demographic analysis of SCD patients as 106 of them S-S and 43 S- β thalassemia, 78 male and 71 female ,54.4% of positive consanguinity and 126 patients on transfusion program , 31.7% of them on chronic transfusion and 46 patients on chelation and 65 patients treated by HU .

The study demonstrate the major complication affect SCD patients . the study demonstrate 16.1% affected by HCV by PCR and other haematological values. The number of painful crisis, hospitalizations and the number of transfused blood units were significantly reduced by regular follow up and proper treatment espicially by HU, there was a statistically significant in HbS and HbA and positive consangunity with p-values= 0.003,0.05 and 0.0001 respectively.

Conclusion: Proper follow up and routine investigation with good chelation and proper treatment especially with hydroxyurea currently provides the best available stratige to achieve hematological and clinical

improvements in sickle cell disease.

Keywords: Sickle cell disease, Haemoglobin S, Hydroxyurea, Haemoglobin F.

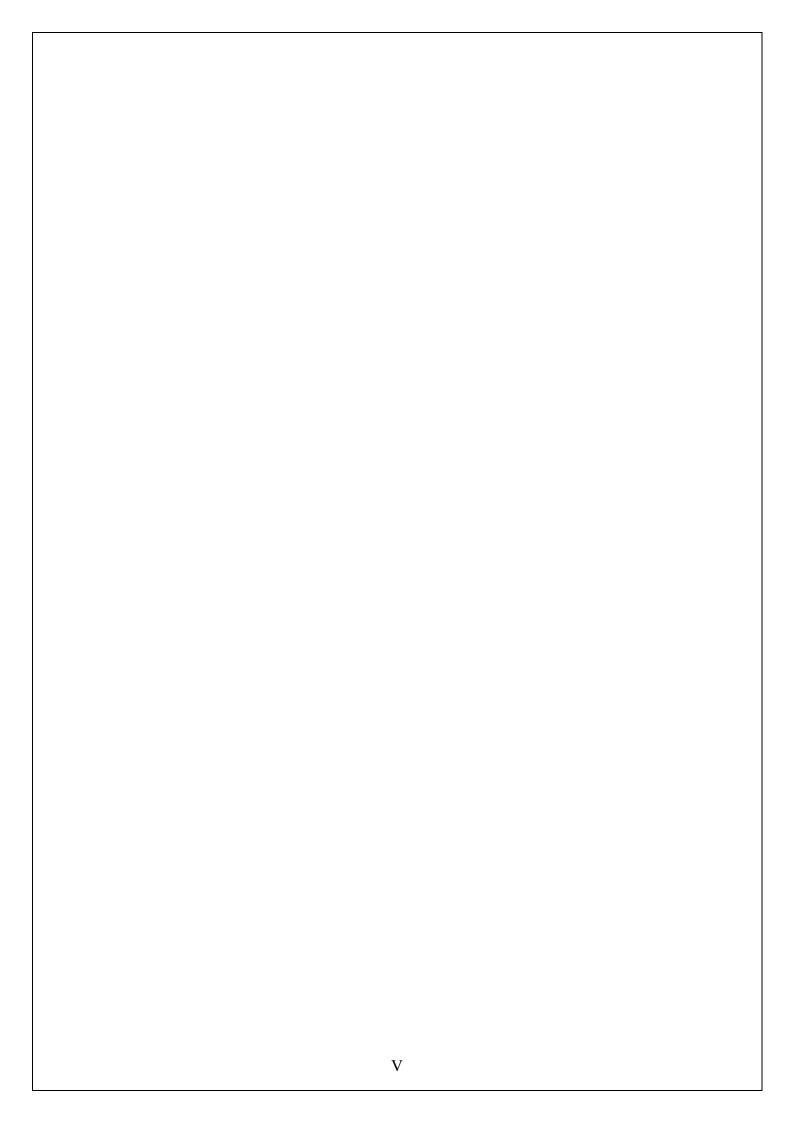
Contents

Subject	Page
List of tables	VI, VII
List of figures	VIII,
List of abbreviations	IX,X
Review of literature	
Chapter1: Introduction	
Historical background	1
• Genetics	4
Pathogenesis of Sickle cell disease	9
Chapter 2: Diagnosis	
Clinical features	13
• Investigations	29
Chapter 3: Management	
General Treatment	37
• Transfusion	40
• Surgical Treatment	43
• Anti-sickling	44
• Induction of HbF	46
Treatment of Sickle cell crisis	49
• Treatment of complications	58
• Curative	63
Patients and methods	66
Results	68
Discussion	78
Conclusion and Recommendation	85
Summary	86
References	88
Arabic summary	

List of tables

Number of table	Address of table	Page of table
Table 1	Differentiation between pneumonia and pulmonary infarction	17
Table 2	Symptomatology and clinical manifestations of VOC	20
Table 3	Differential diagnosis in sickle cell syndromes	31
Table 4	Schedule of immunizations	39
Table 5	Descriptive statistics of demographic data of sickle cell patients included in the study.	68
Table 6	Descriptive statistics of clinical data of sickle cell patients included in the study	68
Table 7	Indication of hydroxyurea in sickle cell disease patients included in the study.	69
Table 8	Complication of hydroxyurea in sickle cell patients included in the study	70
Table 9	Complication of sickle cell disease among patients included in the study.	70
Table 10	Anthropometric data of sickle cell patients included in the study.	72
Table 11	ALT and AST data of sickle cell patients included in the study.	72

Table 12	Laboratory data of sickle cell patients in the study.	73
Table 13	Comparison between demographic data of SCD.	73
Table 14	Comparison between clinical data of sickle cell patients included in the study in relation to diagnosis.	75
Table 15	Comparison between demographic and laboratory data of sickle cell patients in the study.	75


List of figures

Number		Page
of	Address of figure	of
figure		figure
Figure	Inheritance of SCD	5
1		
Figure	Sickle cell dactylitis (hand –foot syndrome)	14
2		
Figure	Assessment of unwell child in emergency	51
3		
Figure	Mangment of pain in children with sickle cell	
4	disease in the emergency.	52
Figure	Indication of hydroxyurea in sickle cell disease	69
5	patients included in the study	
Figure	Complication of sickle cell disease among	
6	patients included in study	71
Figure	Age group of S-S and S-B thalassemia patients	74
7	included in the study.	
Figure	Comsangunity of S-S and S-B thalassemia	74
8	patients in the study.	

Lists of Abbreviation

ADC-	A
ABGs	Arterial blood gases
ACS	Acute chest syndrome
ANC	Absolute neutrophilic count
APS	American pain society
ATP	Adenosine triphosphate
BMT	Bone marrow transplantation
CSSCD	Cooperative Study of Sickle Cell Disease
CT scan	Computerized tomography scans
CVS	Chorionic villous sampling
Hb	Hemoglobin
Hb A	Adult hemoglobin
α -HBD	α-Hydroxybutyric dehydrogenase
Hb F	Fetal hemoglobin
Hb S	Sickle hemoglobin
НСТ	Hematocrit
H. influenza	Haemophilus influenza
HIB	Haemophilus influenza vaccine
HIV	Human immune deficiency virus
HPLC	High performance liquid chromatography
HPHP	Hereditary persistent fetal haemoglobin
HU	Hydroxyurea therapy
ISC	Irreversibly sickled cells
IUHSCTx	In utero hematopoietic stem cell transplantation
LC	Laparascopic cholecystectomy
MCH	Mean corpuscular hemoglobin
MCHC	Mean corpuscular hemoglobin concentration
MCV	Mean corpuscular volume
MMR	Measles, Mumps, Rubella

MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
MTD	Maximum tolerated dose
MSH	The Multicenter Study of Hydroxyurea in Sickle
	Cell Anemia.
NHLBI	National Heart, Lung and blood institute
NO	Nitric oxide
Polio	Oral polio vaccine
SCA	Sickle cell anemia
SB	Sickle beta thalassemia
SCD	Sickle cell disease
SCI	Silent cerebral infarcts
SCT	Stem cell transplantation
S. Pneumonia	Staphylococcus Pneumonia
TBV	Total blood volume
TCD	Tran cranial Doppler
TIAs	Transient ischemic attack
UTI	Urinary tract infection
VOC	Vaso- occlusive crises

Chapter (1) Introduction

SICKLE CELL DISEASE

Definition

Sickle cell disease (SCD) is a chronic hemolytic disease resulting from premature destruction of sickle red cells and presents by special clinical course attributed to ischemic changes resulting from vascular occlusion by masses of sickle cells.(Powars and Hitti,1993).

SCD includes sickle cell anemia (Hb SS disease), sickle cell hemoglobin C disease (Hb SC disease) ,sickle cell β.thalanemia and others (Beutler,1995).

History:

Sickle cell anemia was first described in a West indian student by Herric in1910.

Pathologic bases of the disorder and its relation to the hemoglobin molecule were defined 1927 by Hahn and Gillespie (Herric, 1910).

In 1949 Pauling and colleagues found that Hb in patient with sickle cell anemia show an abnormal slow rate of

migration on electrophoresis and this abnormal HbS caused the SCD.(Pauling ,1949).

Ingram found that the abnormality in HbS exists in the sixth position of β globin chain and consist of substitution of glutamic acid by valine.(Nathan and Oskin 2000).

The Noble Prize chemist, Linus Pauling, deduced the genetic nature of the disease (Pauling, 1949).

Hemoglobin molecules in normal red cells bind oxygen in the lung for delivery to the body cells. Sickle cells have a genetically defective hemoglobin and although they bind oxygen, upon its release and delivery to the body cell, the remaining hemoglobin, now de-oxygenated, crystallizes. (Styles, 1996).

The crystals distort the shape of red blood cell giving it the sickle appearance (Pauling, 1949).

Geographic distribution:

HbS gene is prevalent in equatorial Africa, the Mediterranean area, the near east and parts of India. The highest prevalence of HbS occurs in parts of central and West Africa, where up to 40% of some ethnic groups are carriers. The major sickle haplotype in Africa are Senegal, and Benin (Platt, 1995).

In the Mediterranean area, the sickle cell gene is derived from Central and West Africa (Benin haplotype). HbS gene is present in Southern Italy, Turkey, Sicily, and Cyprus (Serjeant, 1999).

In Saudi Arabia and Kuwait ,there is particular clinical subtype of sickle cell anemia ,where the frequency of sickle cell trait approaches 20% and homozygous disease is common (Gelp,1979).

In a study of one thousand normal Egyptian persons of different ages, HbS was detected in 0.3 % of cases (El-Beshlawy et al., 1994).

Mokhtar et al .,1998 reported that 8 patients (1.2%) had sickle cell anemia among 660 patients referred to the genetics clinic Medical Research Institute of Alexandria ,to determine the frequency of genetic disorders and the proportion of autosomal recessive disorders .

In another study among 26 Egyptian sickle cell patients, genetic analysis was done and it was concluded that the commonest haplotype in Egypt is the Benin .(Abu El-Hassan et al., 1995).

El-Hazmi et al., 1996 stated that the 14 Egyptian patients included in their study Benin haplotype was found in 100 % of cases with a severe presentation of sickle cell disease.