Correlation Between The Different Types Of Ameloblastoma And Immunohistochemical Analysis Of Tumor Markers

Thesis submitted to faculty of Oral & Dental Medicine, Cairo University, in partial fulfillment of requirement for master degree in oral surgery.

> By Usama Saad Abd El Karim Hellal BDS (2002)

Faculty of oral and dental medicine Cairo University 2009

Supervisors

Prof. Dr. Maha Shawky

professor of oral & maxillofacial surgery faculty of Oral and Dental Medicine Cairo University.

Prof. Dr. Naglaa Kholoussi

professor of clinical pathology, chair of immunogenetic department

National Center of Researches

Dr. Asmaa Ibrahim Salama

Lecturer of Pathology National Cancer Institute

Cairo University

Acknowledgment

First and fore most, I always indebted to "Allah" the kindest and the most merciful

I would like to express my sincere gratitude to Dr. *Maha Shawky* professor of oral & maxillofacial surgery, faculty of oral and dental medicine, Cairo University. I am honored of learning from her huge knowledge and skill.

I truly appreciate Dr. *Naglaa Kholoussi* professor of clinical pathology, National Center of Researches for her continuous help and active support during various stages of this work.

Words can not show how grateful I am for Dr. *Asmaa Ibrahim Salama* lecturer Pathology, National Cancer Institute because of her this study became possible and her efforts were beyond any thank.

I would like to thank Dr. *Mostafa Ahmed* professor of orthodontic, in orodental genetic department, National Center of Researches from whom I received valuable help and knowledge.

I am also pleased with dealing and learning from Dr. *Galal Beheiry* professor of oral & maxillofacial surgery of faculty of oral and dental medicine, Cairo university.

My special thanks and gratitude to Dr. *Omniya Abdel Aziz* instructor of oral & maxillofacial surgery for her help and support.

I would like to thank all staff members of the oral & maxillofacial surgery of faculty of oral and dental medicine, Cairo University for their help during the course of the study.

Finally, my whole greatfullness is extended to Dr. *Tarek El Badry* chairman of orodental genetic department and to all members of orodental genetic department, National Center of Researches for their help and cooperation

Dedications

To my wife, my son and my family, many thanks for their support and limitless trust. In appreciation, I dedicated this work to them.

List Of Abbreviations

AB-----Ameloblastoma

ABC ---- avidin biotin- complex

AC-----ameloblastic carcinoma

AMBN------Ameloblastin protein

CDK----- cyclin dependent kinase

ATM-----mutated in ataxia-telangiectasia

CD44v6-----cyclin dependent 44v6

c-myc-----nuclear transcription factor

E2F----- transcription factor

EGFR-----epidermal growth factor receptor

h TERT-----telomerase reverse transcripase

ICAM-1----- intercellular adhesion molecule-1

Ki-67----- protein expressed in all phases of cell cycle except G0 phase

LI ----- label index

MAPK-----mitogen activated protein kinase

mdm2----- murine double minutes 2

MK-----midkine

MMPs----- matrix metalloproteinases

mRNA----- messenger ribonucleic acid

MRI----- magnetic resonance imaging

OPN----- osteoporitin

p14 (ARF)-----protein product induced by a variety of oncogenic singals

pRb----- retinoblastoma

Ras----- Rat sarcoma

RFC----replication factor c

SP1----- stimulatory protein 1

TGF-beta---- transforming growth factor beta

 $TNF\alpha$ -----tumor necrosis factor alpha

TRAIL----- TNF-related apoptosis-inducing ligand

UV----- ultraviolet

VCAM-1----vascular cell adhesion molecule -1

List Of Content

Introduction	1
Review of Literature	3
Ameloblastoma	3
Recurrence of ameloblastoma	14
Ameloblastoma in children	15
Malignant ameloblastoma	16
P53 Tumor suppressor gene.	20
PCNA proliferating cell nucler antigen.	26
Immunohistochemical studies on ameloblastoma	29
Immunohistochemical expression of p53 & PCNA in ameloblastoma	35
Aim of study	40
Material and methods	41
Results	50
Discussion	69
Summary	77
References	81
Arabic summary	100

List Of Tables

Table (1)	The clinical data of the twenty included pts in the study50
Table (2)	Clinical data of different types of ameloblastoma . lesions of the twenty cases included in the study51
Table (3)	Values of p53 and PCNA calculated as percentages in at least 1000 tumors cells
Table (4)	Quantitative evaluation of the immunoreactivity to the p53 in ameloblastoma varian
Table (5)	Quantitative evaluation of the immunoreactivity to PCNA in ameloblastoma variant
Table (6)	Descriptive statistics of the mean of p53 and PCNA LI. In different histopathologic variants oameloblastomas64
Table (7)	Mean difference between LI of p53 and LI of PCNA in follicular ameloblastoma65
Table (8)	Mean difference between LI of p53 and LI of PCNA in plexiform ameloblastoma65
Table (9)	Mean difference between LI of p53 and LI of PCNA in acanthomatous ameloblastoma66
Table (10)	Mean difference between LI of p53 in different variants of ameloblastoma
Table (11)	Mean difference between LI of PCNA in different
Table (12)	variants of ameloblastoma

List Of Figures

Fig.1- structure of p53 protein	.22
Fig.2- role of p53 as tumor suppressor gene	.25
Fig.3 - a photograph showing a right facial swelling causing asymmetry of the face.	.42
Fig.4 - a photograph showing an intraoral swelling involving the molar, angle region	.42
Fig.5 - a photoradiograph of panoramic x-ray film showing a case of AB of abody & angle of mandible with a multilocular radiolucency& rosorption of molars roots	
Fig.6 - a photoradiograph of panoramic x-ray film showing a case of ameloblastoma of a body, angle and ramus of mandible with a multilocular radiolucency, rosorption of molars roots & impacted third molar.	
Fig.7 - a-photograph of ameloblastoma showing a swelling of right side of mandible causing facial asymmetry (b)-panoramic view show multilocular radiolucency in body, angle and ramus of right side mandible (c)- CT showing lesion penetrating the lingual palate bone	of
Fig.8 - a photoradiograph of 3 DCT of a case of ameloblastoma in mandibler left side showing multiple perforations of lingual and buccal plate of bone	.44
Fig.9- a photograph of an incisional biopsy	.45
Fig.10-a photograph of an exicisional biopsy	.45
Fig.11-a photoradiograph of panoramic x-ray film showing a case of ameloblastoma of symphsial & body of mandible with a multilocular radiolucenc	.52

Fig.12- a photoradiograph of C.T showing lesion penetrating buccal & lingual palate of bone
Fig.13 -a photograph of a case of follicular ameloblastoma showing follicl with peripheral nuclear palisading and central stellate cells(H&EX400)
Fig.14 -a photograph of a case of acanthomatous ameloblastoma with central acanthotic changes (H&E X400)
Fig.15-a photograph of a case of granular cell ameloblastoma (H&E X400)
Fig.16 -a photograph of a case of multicystic follicular ameloblastoma showing the lining cells of the cyst wall with peripheral nuclear palisading and luminal stellate cells (H&E X400)
Fig.17-a photograph of a case of plexiform ameloblastoma (H&E X400)55
Fig.18 -a photograph of a case of unicystic ameloblastoma showing the lining cells of the cyst wall (H&E X400)56
Fig.19-a photograph of a case of desmoplastic ameloblastoma (H&E X400)
Fig.20- expression of p53 & PCNA in different ameloblastoma variant58
Fig.21 -a photograph of a case of desmoplastic ameloblastoma showing positive nuclear reaction to p53 X400 (LI 37%)59
Fig.22- a photograph of a case of plexiform ameloblastoma showing positive nuclear reaction to p53 X400 (LI 44%)59
Fig.23 -a photograph of a case of plexiform ameloblastoma showing negative nuclear reaction to p53 X400 (LI 2%)59
Fig.24 -a photograph of a case of follicular ameloblastoma showing positive nuclear reaction to PCNA X400 (LI 53%)60
Fig.25 -a photograph of a case of granular ameloblastoma showing positive nuclear reaction to PCNA X400 (LI 92%)60
Fig.26 -a photograph of a case of follicular ameloblastoma showing weak positive nuclear reaction to PCNA X400 (LI 2%)60

Fig.27-	bar chart of mean LI of p53 in ameloblastoma variants6	55
Fig.28-	bar chart of mean LI of PCNA in ameloblastoma varia6	55
Fig.29-	bar chart of mean LI for p53 virus PCNA in ameloblastoma variants show highly significant for follicular & plexiform types.	66
Fig.30-	bar chart show comparison of p53 & PCNA LI in primary & recurrentameloblastomas	69

Introduction

Ameloblastoma is a locally invasive neoplasm derived from odontogenic epithelium. It is the commonest one of odontogenic tumors; accounting for approximately 1% of all oral tumors. (1) It has received considerable attention over the years owing to its contradictory, paradoxic, and incongruent aspect of being a benign tumor arising from odontogenic epithelium but exhibiting an aggressive clinical behavior with high tendency for recurrence (2) It occurs over a wide age range (10-92 years), with an average age of around 33 years with no gender predilection (3) Approximately, 85% occur in the mandible with prelediction to the molar-ramus area. (2) The World Health Organization recognizes a range of histologic subtypes of ameloblastoma, such as follicular, plexiform, basaloid, acanthomatous, and granular variants, which have been well described in the literature. Despite this histologic diversity, different cellular patterns can coexist in the same lesion. (4,5)

It remains a subject of considerable interest, notably because of its locally invasive biological behavior, recurrence potential and the controversies regarding treatment modalities. Ameloblastomas are relatively resistant to chemotherapy or radiation therapy, thus, surgery is the most common treatment of this tumor. Treatment of ameloblastoma of the jaws has been either conservative or radical. The conservative approach includes enucleation or curettage and the radical approach includes resection (either segmental resection or marginal resection), Because of the invasive nature of the growth, excision of normal tissue near the tumor margin is often required. Some researchers and clinicians

have considered ameloblastoma to be a low-grade malignant tumor that worth radical treatment. (2)

Immunohistochemical analysis of cell cycle regulatory proteins has been used to predict the biologic behavior of pathologic tissues which help determining the appropriate treatment modality, which has been always a matter of controversy .⁽⁶⁾ The tumor suppressor protein p53 is up regulated in injured cells as p53 maintains genomic stability through the activation of multiple downstream pathways that regulate cell cycle arrest, cell repair and apoptosis.⁽⁷⁾ Therefore, p53 is a tumor suppressor gene with key regulatory effects on both cell cycle and apoptosis.⁽⁸⁾

Proliferating cell nucler antigen (PCNA) is a nuclear nonhistone protein necessary for DNA synthesis, and is an accessory protein for DNA polymerase-alpha, which is elevated during the G1/S phase of the cell cycle. ⁽⁹⁾ PCNA expression may be used as a marker of cell proliferation because cells remain a longer time in the G1/S phase during proliferation. Also, this protein has an essential role in nucleic acid metabolism as a component of DNA replication and repair mechanism. An increase in PCNA levels may be induced by growth factors or as a result of DNA damage in the absence of cell cycle regulatory proteins. ⁽¹⁰⁾ PCNA-positive cells can be regarded as cells involved in the proliferating process. ⁽¹¹⁾

The expression of p53 and PCNA in neoplastic cells of different types of ameloblastomas by means of immunohistochemistry, using monoclonal antibodies against p53 and PCNA has helped to correlate between expression of p53 and PCNA with the clinical behavior and the histopathology in many other studies. (8,10)

Ameloblastoma

Odontogenic tumors are remarkable among oral lesions because of their clinical and histologic heterogeneity. This diversity reflects the complex development of dental structures because odontogenic tumors derive from aberrations in odontogensis. Ameloblastoma deserves special attention, not only because of its particular biologic behavior, exhibiting great infiltrative potential, high recurrence rate and capacity to metastasize, but also due to the relatively high frequency among odontogenic tumors (12)

Ameloblastoma is the most common odontogenic tumor originating from odontogenic epithelium, constituting 11–18% of all odontogenic tumors. (13) Although it is relatively rare. Ameloblastoma is a slowly growing, locally invasive, epithelial odontogenic tumor of the jaws with high rate of recurrence, even though the histology appears benign. (14)

The odontogenic origin of amloblastomas is derived from many similarities in the histological appearance of the tumor and a developing tooth organ. Possible origins of the neoplastic epithelium are discussed to be either disturbances of the developing enamel organ or epithelial lining of odontogenic cysts, particularly the dentigerous cyst, and odontomas or cell rests of the enamel organ, namely either remnants of dental lamina or remnants of Hertwigs root sheath (epithelial cell rests of Malassez) or the basal layer of the oral surface epithelium (epithelium of the jaws). (12,15)

Ameloblastoma is characterized by its histological resemblance to the enamel organ of developing tooth germ, yet enamel formation is not observed. Ameloblastomas are locally destructive neoplasms with high rate of recurrence observed if the lesions are not entirely excised. Few cases with malignant transformation and distant metastasis have been reported in the literature. (14, 20)

The cause of their invasiveness remains unknown. Several studies (16, 17) have been done in an attempt to clarify this phenomenon. Therefore, it is believed that this process involves the rupture of the basement membrane and the surrounding extracellular matrix with subsequent growth and proliferation of tumor cells. The invasive ability of ameloblastoma is also thought to be related to the release of biologically active molecules produced, such as matrix metalloproteinases (MMP), which in turn trigger mitogens to be released randomly, contributing to the cellular proliferation of ameloblastoma cells.

80% of ameloblastoma occur in mandible and the remaining 20% occur in maxilla. The main area of incidence is the mandible, and over two-thirds occur in the molar-ramus region. (1, 21) These lesions are rare in children and the greatest prevalence occurs in age range of 20 to 50 years. (17, 21) However, as they are characterized by slow-growth, their development probably initiate in childhood. (14)

Ameloblastoma appears as an aggressive odontogenic tumor, often asymptomatic and slow growing, with no evidence of swelling. It can sometimes cause symptoms such as swelling, dental malocclusion,

pain, mobility and resorption of teeth, paresthesia of the affected area and rarely ulceration of the mucosa. (1, 22)

The proliferating tumor may infiltrate the cancellous marrow spaces without causing bone destruction. It tends to expand the bone rather than perforate it. Occasionally patients allow an ameloblastoma to persist for many years without treatment and though the expansion may become extremely disfiguring and the tumor dose not break through the bone. But for unknown reasons some ameloblastomas manage to penetrate the bone and extend into the surrounding soft tissues. (12)

The appearance of septae on the radiograph usually represents differential resorption of the cortical plate by the tumor and not actual separation of tumor portions. (23) Because of its slow growth, recurrences of ameloblastoma generally present many years and even decades after primary surgery. (24) When treated inadequately, malignant development is a possibility. (1)

Concerning the different clinical variants of ameloblastoma, ameloblastoma is divided in to 3 clinicoradiologic groups: solid or multicystic, unicystic and peripheral ameloblastoma. The solid ameloblastoma is the most common form of the lesion (86%). It has a tendency to be more aggressive than the other types and has a higher incidence of recurrence. (25)

Unicystic ameloblastoma is defined as a cyst lined by ameloblastic epithelium with tall columnar basal cell layer, subnuclear vacuoles, reverse nuclear polarity and thin layer of edematous, degenerate