Effect of Polyunsaturated Fats on Lipolytic Activity of Adipose Tissue in Obese and in Insulin Resistant Rats

Thesis

Submitted for partial fulfillment of MD degree in Physiology

By Rasha Ali Abd El-Razik El-Deeb M.B.B.CH

Supervisors

Prof. Dr. Mohamed Hany Gamal El-Dien Mostafa

Professor of Physiology Faculty of Medicine Cairo& MUST Universities

Prof. Dr. Effat Abd El-Halim Khowailed

Professor of Physiology Faculty of Medicine Cairo University

Dr. Mohamed El-Sayed Saleh

Assistant Professor of Physiology Cairo University

Dr. Mona Mohamed Fathy Taher

Lecturer of chemical & clinical pathology
Faculty of medicine
Cairo University

Faculty of Medicine Cairo University 2009

Abstract

The purpose of this study was to detect the effect of polyunsaturated fats (PUF) on the lipolytic activity of adipose tissue in obese and insulin resistant rats.

Both obesity and insulin resistant conditions were induced in rat then PUF was added to the diet of both groups.

Rats in both groups were subjected to the following measurements: body weight (BW), systolic blood pressure, lipid profile (triglyceride, cholesterol, HDL, LDL), blood glucose and Insulin levels assessment as well as studying the lipolytic activity of SC and visceral adipose tissue before and after adding PUF to their diet.

Animals fed with PUF showed significant decrease in BW, systolic blood pressure, and blood levels of glucose, insulin, TG, cholesterol, and LDL while it increased HDL level in both groups.

Adding PUF to the diet increased significantly lipolytic activity of SC and Visceral adipose tissue in both obese & insulin resistant rats, being more effective in visceral adipose tissue and more prominent in obese group.

On the basis of these finding, it is suggested that adding polyunsaturated fats (PUF) to the diet of obese and insulin resistant improve their conditions.

Key words: Obesity, Insulin resistant, polyunsaturated fats (PUF), Adipose tissue, Lipolytic activity.

Acknowledgment

To begin with thank God for giving me the strength to fulfill this work.

I owe supreme gratitude and appreciation to **Professor Dr. Mohammed Hany Gamal El-Dien Mostafa**, Professor of Physiology Faculty of Medicine Cairo and Must University, for his keen supervision and care, without his support it would not have been possible to achieve this work, he is more than one can expect.

I owe a big debt of gratitude to **Dr. Effat Abd El-Halim Khowailed**, Professor of Physiology, Faculty of Medicine Cairo University, for her constant help, valuable comment, inspiration and encouragement throughout the work, her supports cannot be rewarded and make me speechless.

Great thanks and appreciation goes to **Dr, Mohamed El-Sayed Saleh** Assistant Professor of Physiology, Faculty of Medicine, Cairo University for his kind supervision and support.

Sincere thanks and appreciation goes to **Dr. Mona Mohamed Fathy El-Laffat,** Lecturer of chemical and Clinical pathology, Faculty of Medicine, Cairo University for her devoted work, help, effort, advice and time which my words can't appreciate it enough.

Special appreciation and gratitude goes to my home team, my husband and Kids who gave me from their time to fulfill this work and mostly to my beloved parents for their constant support, patience encouragement and sincere help.

Lastly, I am deeply grateful to everyone who has participated in this work.

Rasha El-Deeb 2009

Contents

<u>Contents</u>	Pages
• Introduction and Aim of the work	1
• Review of literature:	3
Adipose tissue	
White adipose tissue	3
Brown adipose tissue	4
Anatomical features	5
Adipose tissue distribution	6
 Morphology and development of adipose tissue 	7
 Role of fatty acids in adipocyte growth and development 	11
 Physiology of adipose tissue 	14
Adipose tissue metabolism	16
• Function of adipose tissue	19
 Mechanism controlling the release of fatty acids from adipose tissue 	e 21
• Obesity	25
• Definition	25
• Causative factors	27
• Gene-Environment interactions	27
• Obesity Genes	29
 Hormonal cause of obesity 	30
• Drug induced obesity	31
• Familial causes of obesity	32
• Environmental causes of obesity	33
 Patho-physiology of obesity 	35
• Complications of obesity	37
• Management of obesity	42
 Relation between obesity and Insulin Resistance 	45
• Non Insulin Dependent Diabetes Mellitus	46
• Insulin resistance	46
• Causes of Insulin resistance	47
 Insulin resistance and derangements in lipid metabolism 	47
• prediabetics	48
 Symptoms of Insulin resistance and pre-diabetes 	49
 Risk factors for pre-diabetes and Type 2 Diabetes 	49
• Non Insulin Dependent diabetes Mellitus (NIDDM)	51
Pathophysiology of NIDDM	52
• Symptoms of NIDDM	55
• Diagnosis	56
• Complication of diabetes	57
• Treatment of Diabetes	58
• Drug therapy	59
• Treatment goal	61
• Treatment complications	62

• Metabolic syndrome	63
 Symptoms and features 	64
• Diagnosis	65
 Pathophysiology 	65
• Therapy	68
• Material and Methods	69
• Results	86
• Discussion	150
• Summary and Conclusion	195
• References	198
• Arabic summary	

List of tables

Tables	Page
Table (1): Drugs that may promote weight gain.	32
Table (2): Critical period for development of obesity.	33
Table (3): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on BW at the end of 3 months of the study.	93
Table (4): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on systolic blood pressure in (mmHg) at the end of 3 months of the study.	94
Table (5): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on blood level of Triglyceride, cholesterol, HDL, LDL (mg/dl) at the end of 3 months of the study.	95
Table (6): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on blood glucose level in (mg/dl) at the end of 3 months of the study.	96
Table (7): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on blood Insulin level (ug/l) at the end of 3 months of the study.	97
Table (8): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on lipolytic activity of both SC and visceral adipose tissue (measured by the amount of free glycerol released in (mg/dl) in presence of adrenalin)	98
Table (9): Effect of induced obesity (gb2a) & induced insulin resistance (gb3a) on antilipolytic activity of both SC and visceral adipose tissue (measured by the amount of free glycerol released in (mg/dl) in presence of insulin)	99
Table (10): Correlation of BW to systolic blood pressure, lipid profile, blood glucose & Insulin level, lipolytic activity of SC and Visceral adipose tissue in (Gb2a).	100
Table (11): Correlation of blood glucose level to BW, systolic blood pressure, lipid profile, lipolytic activity of SC and Visceral adipose tissue in (Gp3a).	101

Table (12): Correlation of blood Insulin level to systolic blood pressure, lipid profile, and lipolytic activity of SC and Visceral adipose tissue in (Gp3a).	102
Table (13): Effect of polyunsaturated fat (Gp2b) on BW (g) in Obese rats at the end of the 6 months of the study.	110
Table (14): Effect of polyunsaturated fat (Gp2b) on systolic blood pressure (mmHg) in Obese rats at the end of the 6 months of the study.	111
Table (15): Effect of polyunsaturated fat (Gp2b) on blood level of Triglyceride, Cholesterol, HDL, LDL (mg/dl) in Obese rats at the end of the 6 months of the study.	112
Table (16): Effect of polyunsaturated fat (Gp2b) on blood glucose level (mg/dl) in Obese rats at the end of the 6 months of the study.	113
Table (17): Effect of polyunsaturated fat (Gp2b) on blood Insulin level (ug/l) in Obese rats at the end of the 6 months of the study	114
Table (18): Effect of polyunsaturated fat (Gp2b) on the lipolytic activity of both SC and Visceral adipose tissue of Obese rats at the end of the 6 months of the study (measured by the amount of free glycerol released in (mg/dl) in presence of adrenalin)	115
Table (19): Effect of polyunsaturated fat (Gp2b) on antilipolytic activity of both SC and Visceral adipose tissue of Obese rats at the end of the 6 months of the study (measured by the amount of free glycerol released in (mg/dl) in presence of insulin)	116
Table (20): Correlation of BW to systolic blood pressure, lipid profile, blood glucose& Insulin levels, lipolytic activity of SC and Visceral adipose tissue in (Gp2b).	117
Table (21): Effect of PUF in (Gp3b) on BW (g) in Insulin resistant rats at the end of the 6 months of the study.	124
Table (22): Effect of PUF in (Gp3b) on systolic blood pressure (mmHg) in Insulin resistant rats at the end of the 6 months of the study.	125

Table (23): Effect of PUF in (Gp3b) on blood level of Triglyceride, Cholesterol, HDL, LDL (mg/dl) in Insulin resistant rats at the end of the 6 months of the study.	126
Table (24): Effect of PUF in (Gp3b) on blood glucose level (mg/dl) in Insulin resistant rats at the end of the 6 months of the study.	127
Table (25): Effect of PUF in (Gp3b) on blood Insulin level (ug/l) in Insulin resistant rats at the end of the 6 months of the study.	128
Table (26): Effect of PUF in (Gp3b) on lipolytic activity of both SC and Visceral adipose tissue of insulin resistant rats at the end of 6 months of the study (measured by the amount of free glycerol released in (mg/dl) in presence of adrenalin)	129
Table (27): Effect of polyunsaturated fat (Gp3b) on antilipolytic activity of both SC and Visceral adipose tissue of insulin resistant rats at the end of the 6 months of the study (measured by the amount of free glycerol released in mg/dl in presence of insulin)	130
Table (28): Correlation of blood glucose level to BW, systolic blood pressure, lipid profile, lipolytic activity of SC and Visceral adipose tissue in (Gp3b).	131
Table (29): Correlation of blood Insulin level to BW, systolic blood pressure, Lipid profile, Lipolytic activity of Sc and Visceral adipose tissue in (Gp3b).	132
Table (30): Collective table showing Effect of PUF on Body weight (g) in obese compared to Insulin resistant rats.	138
Table (31): Collective table showing Effect of PUF on systolic blood pressure (mmHg) in obese compared to Insulin resistant rats.	139
Table (32): Collective table showing Effect of PUF on blood level of Triglycerides and Cholesterol in obese compared to Insulin resistant rats.	140
Table (33): Collective table showing Effect of PUF on blood level of HDL and LDL in obese compared to Insulin resistant rats.	141

Table (34): Collective table showing Effect of PUF on blood glucose level (mg/dl) in obese compared to Insulin resistant rats.	142
Table (35): Collective table showing Effect of PUF on blood Insulin level (ug/l) determined by ELISA in obese compared to Insulin resistant rats.	143
Table (36): Collective table showing Effect of PUF on lipolytic activity of both SC and Visceral adipose tissue in obese compared to Insulin resistant rats as (measured by the amount of free glycerol released (mg/dl) in presence of adrenalin)	144
Table (37): Collective table showing Effect of PUF on antilipolytic activity of both SC and Visceral adipose tissue in obese compared to Insulin resistant rats as (measured by the amount of free glycerol released (mg/dl) in presence of insulin)	145

List of figures

Figures	Page
Figure (1): Representation of 'pear' or lower body fat distribution and 'apple' or upper body fat distribution.	6
Figure (2): white fat cell and brown fat cell.	9
Figure (3): Diagrammatic representation of triglyceride storage (lipogenesis) and breakdown (lipolysis) in adipocytes.	16
Figure (4): Modules shows measurement of Rat arterial blood pressure.	72
Figure (5): Photo of the Rat Insulin ELISA Wells just before incubation period.	75
Figure (6): Photo of Rat Insulin ELISA Well while adding the substrate.	76
Figure (7): Standard curve obtained for Rat Insulin ELISA Kits.	76

List of Graphs

Graphs	Page
Graph (1): Shows changes of body weight (BW) in (g) throughout the study.	146
Graph (2): Shows changes of Systolic blood pressure in (mmHg) throughout the study.	146
Graph (3): Shows changes of blood Triglyceride level in (mg/dl) throughout the study.	146
Graph (4): Shows Changes in Blood Cholesterol Level in (mg/dl) throughout the study.	147
Graph (5): Shows Changes in blood HDL level in (mg/dl) throughout the study.	147
Graph (6): Shows Changes in blood LDL level in (mg/dl) throughout the study.	147
Graph (7): Shows changes in blood glucose level in (mg/dl) throughout the study.	148
Graph (8): Shows changes in blood Insulin level (ug/ml) throughout the study.	148
Graph (9): Shows changes in lipolytic activity of both SC and visceral adipose tissue in presence of adrenalin.	148
Graph (10): Shows changes in antilipolytic activity of both SC and visceral adipose tissue in presence of Insulin.	149

List of abbreviations

- \bullet A = Agouti.
- AHA=American Heart Association.
- ATP=Adenosine triphosphate.
- BMI = Body Mass Index
- BP = Blood Pressure.
- BPAI-1= plasminogen activator inhibitor-1.
- BW = Body Weight.
- CLA = Conjugated linoleic acids
- CPE = Carboxy peptide E.
- DG = Diglyceride.
- E2 = Estradiol.
- EWAT = Epididymal white adipose tissue.
- FCR = Fractional catabolic rate.
- FFA = Free fatty acid.
- GERD= Gastroesophageal reflex disease.
- GOD= Glucose oxidase
- HCT = Hematopoietic Cell Transplantation.
- HDL= High density lipoprotein.
- HMG-CoA= 3-hydroxy3-methylglutaryl coenzyme A.
- HSL= Hormone sensitive Lipase.
- IBWT = Ideal Body Weight for height and Age.
- IDDM = Insulin Dependent Diabetes Mellitus.
- IFG= Impaired fasting glucose.
- IGT = Impaired glucose tolerance.
- IL-6 = Interleukin.
- LCAT = Lecithin Cholesterol acetyltransferase.
- LDL(s) = Low Density Lipoprotein.
- LPL = Lipoprotein lipase.
- LxRs = Liver x receptors.
- MG = Monoglyceride.
- NIDDM =Non insulin dependent diabetes mellitus.
- OBR=leptin receptor.
- OHS= Obesity Hypoventilation Syndrome.
- PCOS= Polycystic ovarian syndrome.
- PUF=Polyunsaturated fat.
- PUFA = Polyunsaturated fatty acids.
- RNY = Roux-en-Y gastric bypass surgery.

- SC = Subcutaneous adipose tissue.
- TBI= Total body irradiation.
- TG= Triglyceride.
- TNFα= Tumor Necrosis Factor alpha.
- TUB = Tubby.
- VBG = Vertical banded gastroplasty.
- VLDL = Very Low Density Lipoprotein.
- WAT = White Adipose Tissue.

Introduction:

Adipose tissue serves as the main fuel and energy supply for the whole body and its metabolic activity is the main contributor to the development of obesity, followed by or concomitant with insulin resistance and cardiovascular diseases. (*Fickova et al.*, 1998)

The fatty acid profile of the adipocytes is determined by the composition of dietary fats. (*Gavino and Gavino*, 1991).

Although dietary recommendations for the prevention of obesity remain controversial, the replacement of saturated fatty acids by the polyunsaturated fatty acids of plant origin (n-6 series) is already a well documented and widely accepted strategy. In addition, the effects of (n-3) polyunsaturated fatty acids (mainly from salt-water fish) have been studied in view of the potency of these compounds in reducing plasma triglycerides (*Fickova et al.*, 1998).

Obesity is often associated with metabolic syndrome which includes insulin resistance, dyslipidemia and hypertension. (*Spiegelman and Flier*, 2001) Weight reduction lowers arterial blood pressure in obese hypertensive patients, suggesting a close association between energy homeostasis and hypertension. (*Busetto*, 2001).

Regional variations in adipose tissue function seem to have an additional bearing on insulin resistance. Visceral fat accumulation has a stronger association with insulin resistance than subcutaneous fat accumulation. This has in part been attributed to higher lipolytic activity in visceral than subcutaneous adipose tissue. (*Wajchenberg*, 2000) There is much evidence showing that the function of adipose tissue is disturbed in insulin-resistant states. The ability of insulin to suppress fatty acid

release from adipose tissue is impaired in obesity and insulin resistant states. (*Lofgren et al.*, 2002.)

Intra-abdominal fat depots, although relatively small in comparison with subcutaneous fat depots, play an important role in fat buffering. Rate of lipolysis from intra-abdominal adipocytes, when measured in vitro, tends to be high. (*Campbell et al.*, 1994).

However, enlarged intra-abdominal fat store is associated in many studies with features of insulin resistance. (*Wajchenberg*, 2000).

Aim of work:

The aim of the present work is to study the effects of polyunsaturated fats on adipose tissue function, lipid profile, body weight, and blood pressure in obese and insulin resistant male rats.