

BIOREMEDY OF SOME HAZARDOUS LIQUID WASTE USING BACTERIA AND MOLECULAR DESCRIPTION FOR TOLERANT ISOLATES OF IT

A Thesis Submitted
For The Degree Of Doctor of Philosophy
In Science (Microbiology)

By Walaa Salah El-Din Mohammed M. Sc. Of Microbiology (2005)

Botany Department
Faculty of Women
For Arts, Science and Education
Ain Shams University
2013

بسم الله الرحمن الرحيم

وَقُلِ اعْمَلُواْ فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُكُم بِمَا كُنتُمْ تَعْمَلُونَ

صدق الله العظيم

(الایه ۱۰۵ من سورة التوبه)

This thesis has not been submitted for any degree at this or any other University

Walaa Salah El-Din

SUPERVISORS

4 Dr. Zeinab Mohamed Hassan Kheiralla

Prof. of Microbiology Botany Department Faculty of Women for Arts, Science and Education Ain Shams University

🖶 Dr. Ibrahim Abulyazid Ibrahim

Prof. of Molecular biology - Genetic engineering Nuclear research Center- Atomic Energy Authority

4 Dr. Abeer Ahmed Rushdy Mohammed

Assistant Prof. of Microbiology Botany Department Faculty of Women for Arts, Science and Education Ain Shams University

🖶 Dr. Talaat Abdallah El-Said Bayoumi

Assistant Prof. of Radioactive Wastes Nuclear research Center- Atomic Energy Authority

♣ Dr. Reham Mohamed Mohamed Ahmed El-Korashey

Researcher, Analytical chemistry National Water Research Center

Approval Sheet

Name: Walaa Salah El-Din Mohammed. Title: Bioremedy of some hazardous liquid waste using bacteria and molecular description for tolerant isolates of it.

Approved

Supervisors

· · · · · · · · · · · · · · · · · · ·
1. Prof. Dr. Zeinab Mohamed Hassan Kheiralla
2. Prof. Dr. Ibrahim Abulyazid Ibrahim
3. Ass. Prof. Dr. Abeer Ahmed Rushdy Mohammed
4. Ass. Prof. Dr. Talaat Abdallah El-Said Bayoumi
5. Dr. Reham Mohamed Mohamed Ahmed El- Korashey
•

Dedication

To my father, my brothers, my sister, my husband, my children and my late mother

Acknowledgement

Firstly, my unlimited thanks to God for helping me in every thing.

I would like to present my profound gratitude to Prof. Dr. Zeinab Mohamed Hassan Kheiralla, Prof. of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain-Shams University for her supervision, generous guidance throughout the course of this investigation.

My deep thanks to Dr. Ibrahim Abulyazid Ibrahim, Prof. of Molecular biology - Genetic engineering, Nuclear research Center- Atomic Energy Authority Who mainly suggested the topic of this work and allowed all necessary facilities and materials to complete this work.

Sincere thanks are also expressed to Dr. Abeer Ahmed Rushdy, Ass. Prof. of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain-Shams University for her valuable help and sincere cooperation for preparation of this thesis.

My sincere thanks are also expressed to Dr. Talaat abdallah El-Said, Ass. Prof. of radioactive Wastes, Nuclear research Center- Atomic Energy Authority for his help during the progress of the work.

I would like to extend my thanks to Dr. Reham Mohamed El-korashey, Dr. of Analytical chemistry, National Water Research Center for her valuable help in the chemical analysis of my samples.

I would like to extend my sincere gratitude to Dr. Ahmed Nabel, Dr. of Microbiology, Nuclear research center, Atomic energy authority, Inshas for his valuable help during the progress of the work.

My sincere thanks are also expressed to staff in Centeral Labs, Nuclear research center, Atomic energy authority, Inshas.

I would like to offer my great thanks to my colleagues in CLEQM, National Water Research Center and staff in Botany Department, College of Women for Arts, Science and Education, Ain Shams University.

Walaa Salah El-Din.

Abbreviations

APHA American public health association

APS Ammonium Persulfate

Biolife Biolife company

BOD Biochemical oxygen demand

CAT CatalaseCd CadmiumCo Cobalt

COD Chemical oxygen demond

CTAB Cetyl trimethyl ammonium bromide

Difco Difco company

DNA Deoxyribonucleic acid

dNTPs Deoxyribonuclotides triphosphates

DO Dissolved oxygen

DWAF Department of water affairs and forestry

EC Electrical conductivity

EDTA Ethylene diamine tetra acetic acid

EMB Eosin Methylene Blue

FC Faecal coliform
G.d Genetic distance

Hg Mercury

HMC Heavy metal contaminationHPC Heterotrophic plate count

ICP-OES Inductively Coupled Argon Plasma- Optical

Emission Spectroscopy

MBC Minimum bactericidal concentration

MF Membrane filter

m-FC Modified-faecal coliform

MIC Minimum inhibitory concentration
 m-PA Modified-Pseudomonas aeruginosa
 PAGE Polyacrylamide Gel Electrophoresis

Pb Lead

PCR Polymerase Chain Reaction

POX Peroxidase

RAPD Random Amplified polymorphic DNA

RNA Ribonucleic acid

ROS Reactive oxygen species

S.I. Similarity index

SDS Sodium dodecyl sulfate
SOD Superoxide dismutase

TAE Tri acetic EDTATC Total coliform

TCA Trichloroacetic acidTDS Total dissolved solidTE Tri/ EDTA buffer

TEM Transmission Electron Microscopy **TEMED** N,N,N,N-Tetramethylethylenediamine

TSI Triple sugar iron medium

TWQR Target Water Quality Range for irrigation

WHO World health organization

Symbols

μg Microgram Microliter

cfu Colony forming unit

Conc. Concentration

g Gram hours L Liter

mg Milligram

mg/l Milligram per liter

min Minute Millimoler

mS/m milli-Siemens per meter

nm Nanometer

°C Degrees centigrade rpm Revolution per minute

 $\begin{array}{ccc} \textbf{Sec} & & \textbf{Seconds} \\ \textbf{V} & & \textbf{Volte} \\ \textbf{X} & & \textbf{Power} \end{array}$

Aim of the work

The plan of this study aims to the following;

- Study metal tolerance of isolated bacteria.
- Optimization of heavy metal removing by determination the effect of some important factors (pH, time, temperature, metal concentration and biomass concentration).
- Molecular description and differentiation between tolerant isolates treated and untreated with heavy metal ions through these points:
 - Catalase enzyme, lipoprotein, glycoprotein and protein were detected electrophoretically.
 - DNA of selected tolerant isolate was tested using RAPD-PCR assay.

These studies could be of great significance since the results could provide some information on the possible use of these tolerant bacterial isolates for bioremediation of heavy metals in metal contaminated environments.

Contents

Aim of the work Abstract

REVIEW OF LITERATURE

1-Heavy metals	2
1-1- Occurrence in the environment	2
1-2- Heavy metal contamination	3
1-3- Heavy metal toxicity	5
2-Metal ion removing	6
2-1- Conventional methods	7
2-2- Biological methods (bioremediations)	8
3- Biosorption	10
3-1- Bacterial biosorption	11
3-2- Biosorption mechanism	12
3-3- Minimal inhibitory concentration (MIC)	14
3-4-Factors affecting on biosorption	14
4-Molecular study of heavy metal	15
tolerant bacteria	
4-1- Molecular response of bacteria to heavy	16
metal stress	
4-1-1- Protein	16
4-1-2- Lipoprotein	16
4-1-3- Glycoprotein	17
4-1-4- Enzymes	18
4-1-5- Deoxyribonucleic acid (DNA)	19

Materials And Methods

Part I

1-Description of the studies area	21
2- Water and sediment samples collection	21
3- Physico-chemical analyses for the samples	23
4-Bacteriological analysis for wastewater	23
samples	
5-Isolation of different bacteria from	26
wastewater samples	
a-Isolation of E. coli	26
b-Isolation of Salmonella sp	27
c-Isolation of <i>Pseudomonas aeruginosa</i>	28
d-Isolation of Enterococcus sp	29
e-Isolation of <i>Staphylococcus aureus</i>	30
6- Maintenance of isolates	30
7- Confirmatory tests of isolated bacteria	31
	32
8- Toxicity and biosorption of heavy metals	
8-1-Toxicity	33 33
8-1-1-Response of isolated bacteria to heavy metals stress	
8-1-2-Effects of heavy metals on bacterial growth	33
a-Determination of the growth Percentage under different metal concentrations	33
b-Determination of MIC and MBC	33
	34
c-Transmission Electron Microscopy (TEM)	34
8-2- Biosorption percentage	35
8-2-1- Effect of different factors on biosorption -	33
percentage	35
a-Effect of temperature-	35
b-Effect of pH	36
c-Effect of heavy metal concentration	36
d-Effect of incubation period	36

e-Effect of	biomass	concentration
-------------	---------	---------------

ntration----- 37

<u>Part II</u>

1- Molecular studies for tolerant isolates	37
a. Gel formulations (8%)	37
b. Sample preparation for Native-PAGE	39
c. Running conditions	40
d. Staining	40
e. Storage-drying solution	40
1-1- Protein electrophoresis	41
1-2-Lipoprotein electrophoresis	41
1-3-Glycoprotein electrophoresis	41
1-4-Catalase enzyme electrophoresis	42
1-5-DNA assay	43
a- Genomic DNA extraction	43
b-Amplification of genomic DNA by random	4
amplified polymorphic DNA (RAPD-PCR)	45
c-Agarose gel electrophoresis	47
1-6-Data analysis	47
Results	
Part I	
<u>1 art 1</u>	
1-Physico-chemical analyses of the samples	49
1-1-Temperature	49
1-2-Hydrogen ion concentration (pH)	49
1-3-Electrical conductivity (EC)	50
1-4-Total dissolved solids (TDS)	50
1-5-Dissolved oxygen (DO)	50
1-6-Biochemical oxygen demand (BOD)	50
1-7-Chemical oxygen demand (COD)	51
1-8-Heavy metals	51
1 (/ 1104 / Y 1110441)	\mathcal{L}