دراسات على إنتاج هجن فراولة محلية

رسالة مقدمة من نورا محمد طه محمد على

بكالوريوس علوم الوراعية (بساتين) ، جامعة عين شمس ، 2004 ماجستير علوم الوراعية (خضر)، جامعة عين شمس ، 2009

للحصول على

درجة دكتور فلسفة في العلوم الزراعية (خضر)

قسم البساتين كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة دراسات على إنتاج هجن فراولة محلية

رسالة مقدمة من نورا محمد طه محمد على

بكالوريوس علوم الزراعية (بساتين) ، جامعة عين شمس ، 2004 ماجستير علوم الزراعية (خضر)، جامعة عين شمس ، 2009

للحصول على درجة دكتور فلسفة في العلوم الزراعية (خضر)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

••••••	د. عبد العزيز محمد خلف الله
ة الزراعة ، جامعة الأسكندرية	أستاذ الخضر المتفرغ ، كليا
•••••	د. محمد إمام رجب
، ، جامعة عين شمس	أستاذ الخضر ، كلية الزراعة
•••••	د. محمد هاشم الديب
، ، جامعة عين شمس	أستاذ الخضر ، كلية الزراعة
•••••	د. ابراهیم ابراهیم العکش
الزراعة ، جامعة عين شمس	أستاذ الخضر المتفرغ ، كلية

تاريخ المناقشة: / / 2013

جامعة عين شمس كلية الزراعة

رسالة دكتوراه

اسم الطالهة : نورا محمد طه محمد على

عنوان الرسالة : دراسات على إنتاج هجن قراولة محلية

اسم الدرجة : دكتور فلسفة في العلوم الزراعية (خضر)

لجنة الإشراف:

د. إبراهيم إبراهيم العكش

أستاذ الخضر المتفرغ ، قسم البساتين ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. محمد هاشم الديب

أستاذ الخضر ، قسم البساتين ، كلية الزراعة ، جامعة عين شمس

د. صلاح محمود المنياوي

أستاذ الخضر المساعد ، قسم البساتين، كلية الزراعة ، جامعة عين شمس

تاريخ التسجيل 11 / 2/010

الدراسات العليا

أجيزت الرسالة بتاريخ 2013 / 12 / 17 موافقة مجلس الجامعة / / 2013 ختم الإجازة

موافقة مجلس الكلية / 2013

STUDIES ON PRODUCTION OF LOCAL STRAWBERRY HYBRIDS

By

NOURA MOHAMMED TAHA MOHAMMED ALI

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2004 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2009

A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

in Agricultural Sciences (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON PRODUCTION OF LOCAL STRAWBERRY HYBRIDS

By

NOURA MOHAMMED TAHA MOHAMMED ALI

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2004 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2009

This thesis for Ph.D. degree has been approved by:

Dr. Abd El-Aziz Mohamed Khlafala Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Alexandria University Dr. Mohamed Emam Ragab Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University Dr. Mohamed Hashem El-Deeb Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University. Dr. Ibrahim Ibrahim El-Oksh

Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams

Date of Examination: / / 2013

University

STUDIES ON PRODUCTION OF LOCAL STRAWBERRY HYBRIDS

By

NOURA MOHAMMED TAHA MOHAMMED ALI

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2004 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2009

Under the supervision of:

Dr. Ibrahim Ibrahim El-Oksh

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Hashem El-Deep

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Salah Mahmoud El-Miniawy

Associate Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

INTRODUCTION

Strawberry is a member of the family Rosaceae, subfamily Rosoideae, and genus *Fragaria*. *Fragaria* species can be grouped by ploidy: there are nine diploids, two tetraploids, one hexaploid, and four octoploids. The Four octoploids (2n=56) are known: F. *iturupensis* Schlect. F. *chiloensis* (L.) Duch. *F. virginiana* Duch., and *F. ×ananassa* Duch. The cultivated varieties of commercial strawberries are almost all octoploids and are derived chiefly from the octoploids F. *chiloensis* and F. *virginiana*, usually recognized as *F. x ananassa*.

In Egypt, strawberry is of the most important horticultural crops, this tended Egypt into the development of production at high rates and spread cultivated in many regions of the Qaliubiya, Esmailia and Elbehera governorates. Where its acreage reached about 16216 feddan in 2012, yielding about 21.151 tons⁽¹⁾ (Statistical year book, 2012).

The crop is vegetatively propagated but using the frozen transplants, a method now prevailing in Egypt, which is not suitable for export to the European countries for the delay in production until the first of March, which is near the end of the export season and low prices. This led the producer attention to increase the amount of strawberry production during the period from November to February, which can be obtained at the highest price and to avoid competition with other countries. Therefore, the trend towards cultivation of early cultivars and following the way of fresh transplants allow production at the beginning of export season during the month of November and thus increasing in export of fresh strawberries

Strawberries are grown throughout Egypt. The common cultivars obtained in California are quite satisfactory, but there are no local

⁽¹⁾ Central Administration for Agricultural Economics General Administration for Agricultural Statistics, Fao, Egypt, 2012.

cultivars or types as well as no vegetative production for the new American cultivars could be done because of the breeder rights. Genetic improvement for the first 200 years was largely from the efforts of amateur private breeders. Strawberry cultivars followed heterozygous homogenous as well as cross pollination, so any seed produced of hybridization considered line The object of hybridization is to combine desirable genes found in two or more different varieties and to produce pure-breeding progeny superior in many respects to the parental types.

The breeding programs aimed to improve plant architecture, taste, flavour, and time of ripening, vitamins, potassium and fiber, fruit appearance and firmness. Success in breeding using hybridization depends to a great extent on the correct choice of parents for crossing.

In this thesis, we aimed to evaluate adaptation performance especially average yield/plant, fruit weight and some phonological plant characteristics such as plant length, number of leaves and leaf area to produce new Egyptian hybrid of strawberry. The new hybrids will be produced through hybridization and reciprocal hybridization among three cultivars, namely: Sweet Charli, Camarosa and Festival.

ACKNOWLEDGEMENT

First of all, ultimate thanks are due to Allah, Who without his aid this work could not be done

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Ibrahim Ibrahim El-Oksh** Faculty of Agriculture, Ain Shams University, for his valuable guidance, supervision, diligent discussion and constructive-criticism throughout the course of this study and during writing the manuscript.

Many thanks to **Prof. Dr. Mohamed Hashem El-Deeb** Faculty of Agriculture, Ain Shams University, for his supervision, advice and great efforts throughout this study and preparing the manuscript.

I am deeply grateful to **Dr. Salah Mahmoud El-Miniawy** Faculty of Agriculture, Ain Shams University, for his supervision, guidance and valuable help during field experiments and preparing the manuscript

The writer would like to express her great appreciation to all the staff members of Horticulture Department, Faculty of Agriculture, Ain Shams University, for their encouragement and valuable help during the course of this work.

I am particularly grateful to **my husband and my family** for their help and continuous encouragement during my study period.

CONTENTS

	Page
LIST OF TABLES	ii
1.INTRODUCTION	1
1. REVIEW OF LITERATURE	3
2.1. Seed germination	3
2.2. Vegetative growth characters.	5
2.3. Yield and its components	7
2.4. Physical characteristics of fruits.	10
2.5. Chemical characteristics.	13
2.6. Heterosis	16
2.7. correlation	18
2. MATERIALS AND METHODS	20
3.1. Genetic materials	20
3.2. Seed germination	22
3.3. Nursery stage	23
3.4. Evaluation and hybrid selection	23
3.5. Average degree of heterosis	25
3.6. Phenotypic correlation coefficients	27
3.7. Statistical analysis	27
3. RESULTS AND DISCUSSION	28
4.1. Seed germination	28
4.2. Vegetative growth characters	29
4.3. Yield and its components	33
4.4. Physical characteristics of fruits	36
4.5. Chemical characteristics.	39
4.6. Heterosis	43
4.7. Phenotypic correlation	48
4. SUMMARY	51
5. REFERENCES	56
ARABIC SUMMARY	

LIST OF TABLES

No		page
1	Description and pedigree of parents	21
2	The three parental cultivars which were crossed during	22
	flowering period to produce the F1 seeds	
3	Germination percentage and speed for F1 hybrid seeds.	29
4	Vegetative characters for 72 F1 hybrids of strawberry and	31
	their parents.	
5	Earliness and yield characters for 72 F1 hybrids of strawberry and their parents.	34
6	Fruit characters for 72 F1 hybrids of strawberry and their parents.	37
7	Chemical fruit characters for 72 F1 hybrids of strawberry and their parents.	41
8	Estimation of heterosis (%) based on Mid-parent, better parent for vegetative characters in some hybrids.	43
9	Estimation of heterosis (%) based on Mid-parent, better parent for yield components in some Hybrids.	45
10	Estimation of heterosis (%) based on Mid-parent, better parent for fruit characters in some hybrids.	46
11	Estimation of heterosis (%) based on Mid-parent, better parent for chemical fruit characters in some hybrids.	47
12	Phenotypic correlation for the studied characteristics, using f1 hybrid data in strawberry	50

2. REVIEW OF LETTERATURE

2.1. Seed germination:

Propagation of strawberry plants from seed is not a common practice for commercial production, but is usually used for obtaining new cultivars. One of the difficult problems that face strawberry breeding is seed germination.

2.1.1. Seed germination percentage:

El Shimi (1978) reported that the germination of the hybrid seeds ranged mostly from 58 to 94%.

Melvill *et al.* (1980) found that seed germination of nine strawberry progenies were significantly differed among them and ranged from 53% to 79%.

Miller and Chandler (1990) developed a protocol for overcoming germination failures, thus rescuing more gene combinations and generating numerous plantlets from a single embryo through continuous shoot proliferation. Achenes were surface sterilized and cultured on M.S. medium. The results showed that seed germination ranging from 40% to 97% depending on genotype and achene treatments.

El Miniawy (1991) mentioned that seed germination ranged from 28% to 77% due to different genotypes used.

Esmail (2003) used two different media. Seed germination percentage on M.S. medium ranged from 10.4 to 79.7% and on Damiano medium ranged from 12.3 to 64.1%. The highest value was recorded form *Fragaria chiloensis* X *Fragaria virginiana* while the lowest value was observed for the *Fragaria chiloensis* sp.

Marta *et al.* (2004) made crosses between *F. vesca* and *F.* x *ananassa* and produced 35 hybrid achenes but only 14% germinated.

Ibrahim (2008) reported that the germination of the cultivar achenes ranged from 25.52 to 94.17%.

2.1.2. Speed of germination:

Seeds of the different species and cultivars of strawberry vary greatly in their speed of germination.

Darraw (1927) mentioned that seeds of *F. virginiana* germinated more rapidly than any other species, while seeds of *F. chiloensis* did not germinate before two or even four weeks.

El Shimi (1978) found significant difference between speed germination of Balady cultivar and those of Tioga and Fresno.

El Miniawy (1991) indicated that great differences were detected among the tested genotypes in speed of seed germination. Generally Chandler, Tufts and Parker germinated more rapidly than other cultivars. Intermediate germination speed was recorded for Douglas, Pajaro, Sequoia and Balady while the Sequoia and Selva were the latest cultivars regarding their speed of germination.

Miller et al. (1992) enhanced strawberry seed germination through in vitro and decreased the time to germinating achenes by cutting surface sterilized achenes across the embryo axis then placing the shoot apex radical – containing sections on semi-solid Murashige and Skoog medium. They reported that nearly 100% of the achenes from freshly harvested red-ripe strawberries germinated after cutting and culture the achenes.

Esmail (2003) reported that seeds of *Fragaria virginiana* and some produced hybrids germinated more rapidly than the other genotypes.

2.2. Vegetative growth characters

It is well known that strawberry cultivars showed great difference regarding their vegetative growth characteristics.

2.2.1. Plant length:

Ragab *et al.* (2000) mentioned that Rosa-linda was the tallest cultivar as compared with Chandler, Camarosa and Sweet Charlie.

Mohamed *et al.* (2002) found significant differences in some strawberry strains regarding plant length.

Esmail (2003) cleared that the highest average of plant length was 16.03 cm, and the lowest value was 10.43 cm, these differences in the lengths are due to genetic factor.

Abd Ellatif *et al.* (2009) found that the highest values of plant length were obtained from Camarosa and Vantana cultivars.

El Sayed (2009) indicated that great differences were detected among the tested genotypes in plant length. Festival recorded 15.75 cm, Camarosa gave 15.25 cm and Sweet Charlie recorded 15.05 cm of plant length.

2.2.2. Number of leaves/plant:

El Shimi (1978) found that F1 hybrids were intermediate between their parents and no heterotic effect was noticed in all F1 hybrids in number of leaves/plant.

El Miniawy (1991) showed that there were significant differences among 9 strawberry cultivars in their number of leaves/plant. Selva had number of leaves equal to both Tufts and Pajaro, lower than Douglas and Sequoia and higher than Chandler.