PROGNOSTIC VALUE OF CLINICAL EXAMINATION AND SOMATOENSORY EVOKED POTENTIALS IN COMA DUE TO STROKE

Thesis

Submitted for Complete Fulfillment of The Master Degree (M.Sc.) in

Neuropsychiatry

By

Dr. Mohamed Mahmoud Mohamed Abdelwahab

(M.B.B.Ch)

Supervised by

Prof. Dr. Sadek Helmy

Professor of Neurology, Faculty of Medicine, Cairo University

Prof. Dr. Hanan Amer

Professor of Neurology, Faculty of Medicine, Cairo University

Prof. Dr. Nehal Alshazly

Professor of Neurophysiology

Faculty of Medicine, Cairo University

Faculty Of Medicine Cairo University 2014

Acknowledgment

First, and foremost, all thanks and gratitude to GOD, most gracious and most merciful.

I would like to express my sincere gratitude to my **Prof. Dr. Sadek Helmy**, Professor of Neurology, Cairo University, for his continuous support and, for his patience, motivation.

I am extremely grateful to **Prof. Dr. Hanan Amer,** Professor of Neurology, Cairo University,
for her continuous guidance and suggestions,
saving no effort or time to make this work better.

Really, this work could not be finished without
her support and help.

I would like to express my appreciation to **prof. Dr. Nehal Alshazly,** Professor of Neurophysiology, Cairo University, for her great cooperation, assistance.

I would like to thank **Prof. Dr. Ann Abdulkader**, Professor of neurophysiology and **Prof. Dr. Montasar Hegazy**, Professor of neurology for their sincere help and support.

ABESTRACT

Background: Coma is one of the serious complications of stroke, which is a leading cause of death and disability in the world. Early and accurate evaluation and prediction of the prognosis of coma due to stroke enables proper medical management, help physicians and patient's family to make decisions about the medical care. Objective: to evaluate the utility of clinical examination and SSEP for the prediction of awakening from coma due to stroke and the prediction of the functional outcome after stroke, and compare it to the usually used clinical scales as GCS. Methods:30 patients with recent disturbed conscious level due to stroke were studied on admission by full neurological examination and somatosensory evoked potential study for each patient. The patients were re-evaluated after 1 month of admission by full neurological examination, assessment of their disability by Barthel Index and MRC scale, and follow up SSEP. Results: The mean N20 latency was shortest (19.56 ±0.7 SD) in patients who survived with no disability while it was longest in patients who died (25.31± 2.8), GCS has a significant predictive value in outcome among all cases, At a cut-off level ≤ 6 , it differentiates between died and survived cases with specificity 84.6% and sensitivity 82.4 %.(p.= 0.0001). N20 latency has a fairly good predictive value in outcome among all cases, at a cut-off level of no response, it differentiates between died and survived cases with specificity 100% and sensitivity 41.2 %. N20 latency has the most specific predictor (100%) but sensitivity and it doesn't differ much than specificity).conclusion: SSEP may be affected in coma patients due to cerebrovascular causes. It can have a predictive value of bad prognosis especially in absent response, but it is not superior over clinical parameters including GCS in predicting bad outcome.

Keywords:

Stroke - Coma - Somatosensory Evoked Potential - Glasgow Coma Scale Outcome - Predictive Value.

List of Contents

	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Introduction and Aim of the Work	1
Review of Literature	
Chapter (1): Definition And Etiology Of Coma	3
Chapter (2): Pathophysiology And Pathogenesis	26
Chapter (3): Evaluation Of Altered Consciousness	33
Chapter (4): Somatosensory Evoked Potential	49
Chapter (5): Coma Outcome Predictors	72
Subjects and Methods	83
Results	93
Discussion	119
Summary and Conclusion	128
References	129
Appendix	
Arabic Summary	

Abbreviations

5-HT Serotonin, 5-hydroxytryptamine

ACH Acetylcholine

AEP Auditory evoked potential

AF Atrial fibirilation

AM Akinetic mutism

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPT α-methylparatyrosine

ARAS Ascending reticular activating system

ATP Adenosine triphosphate

BAEPs Brainstem auditory evoked potentials

BF Basal forebrain

BP Blood pressure

CNS Central nervous system

CPP Cerebral perfusion pressure

CPR Cardiopulmonary resuscitation

CSF Cerebrospinal fluid

CT Computed tomography

DM Diabetes mellitus

DRN Dorsal raphe nuclei

EEG Electroencephalography

EMG Electromyography

EPs Evoked potentials

GABA Gamma-aminobutyric acid

GCS Glasgow coma scale

HCRT Hypocretin

ICP Intracranial pressure

ICU Intensive care unit

LA Leukoaraiosis

Locus ceruleus

L-DOPA L-3,4-dihydroxyphenylalanine

LDT Laterodorsal nuclei

LH Lateral hypothalamus

MAO- B Monoamine oxidase B

MCH Melanin-concentrating hormone

MEP Motor evoked potential

MLSEP Middle-latency somatosensory evoked potentials

MMN Mismatch Negativity

MRI Magnetic resonance imaging

MRN Median raphe nuclei

MS Multiple sclerosis

NA Noradrenaline

NCSE Nonconvulsive status epilepticus

NIHSS The National Institutes of Health Stroke Scale

NMDA N-methyl-D-aspartate receptor

NREM Non rapid eye movement

NSE Neuron-specific enolase

ORX Orexin

PLC Phospholipase C

PPT Pedunculopontine tegmental

RAS Reticular activating system

REM Rapid eye movements

RF Reticular formation

RN Raphe nucleus

SEPs Somatosensory evoked potentials

SI Substantia innominata

SLSEP Short latency somatosensory evoked potential

SN Substantia nigra

SNPC Substantia nigra pars compacta

SSEPs Short latency somatosensory evoked potentials

TMN Tuberomammillary nucleus

TMS Transcranial magnetic stimulation

VEP Visual evoked potential

VLPO Ventrolateral preoptic nucleus

VOR Vestibuloocular reflexe

VS Vegetative state

VTA Ventral tegmental area

List of Tables

Tables		Page
1	Toxic and metabolic causes of coma. From	12
2	Neurologic causes of coma .from	13
3	Mean age, age at onset, and sex of the study group (n=30).	93
4	Number and percent of ischemic and hemorrhagic strokes in patients	94
5	Number and percentage of clinical data of the patient on admission.	95
6	Severity of GCS in patients according to types of stroke	96
7	Mean, SD and P value of GCS in ischemic and hemorrhagic patients	96
8	Mean, SD and P value of GCS in supratentorial and infratentorial groups	97
9	Mean and SD of N20 latency in patients on admission.	98
10	Mean, SD, and P value of N20 latency on admission according to stroke type.	98
11	Mean, SD and P value of N20 latency on admission in relation to the site of the lesion	99
12	mean, SD and P value of N20 latency in relation to GCS scores	100
13	Distribution of cases according to outcome	100
14	Number and percentage of clinical risk factors in relation to patient outcome.	101
15	Mean GCS on admission according to outcome in all cases.	102
16	Pairwise comparison of mean GCS on admission between different groups by ANOVA test	102
17	Comparisons of mean GCS between died and survived group in all cases	103
18	Number and percentage of N20 response in relation to patients' outcome.	103
19	N20 latency mean, SD (on admission) according to outcome in all cases	104

20	Pairwise comparison of mean N20 score according to outcome by ANOVA test.	104
21	Comparisons of mean N20 latency between died and survived groups in all cases	105
22	Comparisons of mean N20 latency between various groups according outcome after 1 month (follow up)	105
23	Comparisons of mean N20 latency between various groups according outcome after 1 month (follow up)	106
24	mean and SD of MRC after one month	107
25	Mean and SD of BI after one month	107
26	Distribution of mortality incidence according to risk factors among all cases.	108
27	Relation between multiple chronic diseases and incidence of mortality by multivariate logistic regression analysis among all cases.	109
28	Potential value of GCS score in predicting outcome among all cases	110
29	Potential value of N20 latency in predicting outcome in all cases.	111
30	Potential value of N20 score in predicting outcome in cases with normal and delayed response (n=23).	112
31	Comparison between GCS, N20 predictive value	114

List of figures

Figures		Page
1	Cross-section of the spinal cord showing the anatomy of the cord gray matter and of ascending sensory tracts.	53
2	SEP Waveforms of Median N (A) and Tibial N. (B)	61
3	International 10-20 system for EEG electrodes placement.	87
4	Distribution of N20 according to response in all cases.	47
5	Percentage of risk factors in mortality cases	108
6	Receiver operating characteristic (ROC) curve to determine GCS in predicting outcome among all cases.	110
7	Receiver operating characteristic (ROC) curve to determine N20 in predicting outcome among all cases.	111
8	Receiver operating characteristic (ROC) curve to determine N20 in predicting outcome among cases with normal and delayed response.	113

INTRODUCTION

Coma is a serious complication in patients with medical illness, particularly among elderly people. There is an increased interest in proper management of coma caused by acute conditions (e.g. survivors of cardiopulmonary resuscitation) or chronic conditions (e.g. persistent vegetative state). Clinicians in emergency departments and intensive care units commonly assess patients with impaired consciousness and have used clinical tools that have withstood the test of time. (**Koehler & Wijdicks, 2008**).

Over the centuries, several terms were used to describe the phenomena that were observed and to grade the level of unconsciousness. In 1977, a landmark paper on aspects of coma following severe head injury was published, presenting **Glasgow Coma Scale (GCS)** as a new scale for grading the level of consciousness after head trauma by **Jennett and Teasdale**, **1977**. Because physicians are concerned with the difficulties of the interpretation of the prolongation of the comatose states. Recently, a few case studies with functional MRI have claimed to be able to identify 'awareness' where none was expected. (**Koehler & Wijdicks**, **2008**).

Since the development of intensive care treatments has allowed extremely brain-damaged patients to survive, intensivists became increasingly concerned about predicting return to consciousness and recovery in such patients, both for medical management and ethical reasons (Logi et al., 2003).

Evoked potentials (EPs) are more promising in the evaluation of comatose patients since they are less affected than

Electroencephalography (EEG) by sedative drugs frequently used inintensive care unit (ICU). They are less global than EEG and thus, allow assessing the topography of dysfunctions. Brainstem auditory evoked potentials (BAEPs) evaluate the functional state of brainstem auditory pathways in the pons, the lower part of the mesencephalon including the lateral lemniscus up to the inferior colliculi and are commonly used as a screening test for poor prognosis. The short latency somatosensory evoked potentials (SSEPs) have been the object of many more clinical studies since; they provide information about the brainstem somatosensory pathways, thalamo-cortical projections and primary somatosensory cortex itself. Since the first reports on BAEPs and short latency SEPs in the prognosis of coma by (Rappaport et al., 1977) and (Greenberg et al., 1981), the use of multimodality EPs as prognostic tool has progressively increased (Logiet al., 2003).

Accurately predicting the chances of awakening is important to help families make decisions about continued medical care. Falsely pessimistic predictions of never awakening (when awakening may have occurred if the patient was supported long enough) should be avoided. (**Tirschwel, 2006**).

AIM OF WORK

The objective of this study is to evaluate the utility of the clinical signs and short latency SSEP (N20) for the prediction of awakening from coma due to stroke and the prediction of the functional outcome after stroke and compare it to the usually used clinical scales as GCS.

DEFINITION AND ETIOLOGY OF COMA

Coma and other states of impaired consciousness represent a severe derangement in cerebral function that may be structural or nonstructural (toxic metabolic,pharmacologic, seizures) in origin.

Many of the underlying processes leading to coma can be both lifethreatening and potentially reversible with the timely institution of medical or surgical therapy (**Stevens &Bhardwaj, 2006**).

Brain injury from global cerebral ischemia is a significant worldwide clinical problem. Global cerebral ischemia can occur in the setting of cardiac arrest, open heart surgery, prolonged hypoxia or hypoglycemia, pathologically elevated cerebral metabolic rate, or decreased cerebral perfusion pressure. The annual incidence of cardiac arrest alone, with concomitant global cerebral ischemia, is in excess of 400,000, and more than 80% of these patients are expected to have poor neurological outcomes. Thus, the medical, financial, and emotional burdens of global cerebral ischemia are enormous (**Robert et al., 2008**).

Definitions

Consciousness is an active process with multiple components. Wakefulness or alertness is a precondition for consciousness.

Stupor and coma are clinical states in which patients have impaired responsiveness (or are unresponsive) to external stimulation and are either difficult to arouse or are unarousable. Coma is defined as "unarousable unresponsiveness" .An alert patient has a normal state of arousal. The