Estimation of Serum Levels of Zinc, Copper and Iron among Giardia Lamblia Infected Children

Thesis

Submitted for partial fulfillment for Master Degree in Medical Science (Parasitology)

By

Reham Kamal Mohamed

(M.B.BCh)

Supervised by

Prof. Dr.Omiama Abou Shady

Professor of Parasitology

Faculty of Medicine- Cairo University

Dr. Mona El Said El Raziky Ass.Prof.

Assistant Professor of Pediatrics

Faculty of Medicine- Cairo University

Dr. Mayssa Mohamed Zaki

Lecturer of Parasitology

Faculty of Medicine- Cairo University

Faculty of Medicine

Cairo University

2009

Abstract

Abstract

The present work constitutes a study on 30 children, aged between 1-10 years old, who were attended the out patient clinics of Cairo university pediatric hospital, with gastrointestinal complaints and diagnosed as having giardiasis by stool examination, they were enrolled as study group. The control group consisted of 30 age matched healthy children ,free of gastrointestinal complaints and free of Giardiasis. Serological levels of Zinc, Copper & Iron were measured by Atomic absorption spectrophotometer). And it was found that the seurm levels of Zinc & Iron decreased significantly. While this did not occur in Copper serum levels.

Key words

Giardia, Iron, Copper, Zinc, Children.

Acknowledgment

First of all I would like to thank **God** who allowed and helped me to accomplish this work and only by his will everything can be achieved.

I wish to express my deepest appreciation to **prof. Dr. Hoda Helmy Al-Rahimy**, head of the Parasitology department, Cairo University for her constant support and guidance.

I wish to express my endless gratitude to **prof. Dr. Omiama Abu Shady**, professor of Parasitology, Cairo University for her human concern, immeasurable support and continuous encouragement.

I would like to express great thanks to **Dr. Mona El Said El Raziky**, Assistant Professor of pediatrics, Cairo University for her valuable advice, limitless help and eminent supervision.

I would like to convey my heartful thanks to **Dr. Mayssa Mohamed Zaki,** Lecturer of Parasitology, Cairo University for her continuous guidance, support and unlimited effort for the successful completion of this work.

I want to thank **Dr. Amal El Saffty**, professor of industrial medicine, Cairo University for giving me the opportunity to carry out most of the practical work of this study.

I also want to thank all staff members and colleagues of Parasitology department, Cairo University for their appreciated help and support during the present work.

List of abbreviations

- AIDS=Acquired immunodeficiency syndrome.
- °C=Degree celcius
- CRP = Cysteine-rich surface protein.
- Cu=Copper.
- CWP1= cyst wall proteins.
- DNA = Deoxyribonucleic acid.
- E/M = Electron microscope.
- E. coli = Entamoeba coli.
- E. histolytica = Entamoeba histolytica.
- ELISA = Enzyme-linked immunosorbent assay.
- EMP= Embden-Meyerhof-Parnas.
- Fe=Iron.
- GalNAc = Galactose N-acetyl D-galactosamine.
- GALT=Gut associated lymphoid tissue.
- G. agilis=Giardia agilis.
- *G. duodenalis= Giardia duodenalis.*
- G.intestinalis= Giardia intestinalis.
- *G.lamblia= Giardia lamblia.*
- G.muris= Giardia muris
- gm=Gram.
- H/A=Height per age.
- Hr=Hours.
- IFA = Indirect fluorescence assay.
- IgA = Immunoglobulin A.
- IgG = Immunoglobulin G.

List of abbreviations

- IgM = Immunoglobulin M.
- kDa = Kilo Dalton.
- mg=Milligram.
- n=Number.
- NaCl=Sodium chloride.
- nm = Nano meter.
- NO=Nitric oxide.
- PCR = Polymerase chain reaction.
- PAMR=perijunctional actomyosin ring.
- PEM=Protein energy malnutrition.
- RNA = Ribonucleic acid.
- ROS=Reactive oxygen species.
- SD=Standard deviation.
- Spp=species.
- SOD=Super oxide dismutase.
- Syn.=Synonymous.
- UV=Ultraviolet.
- VSP=Variant surface proteins.
- W/A=Weight per age.
- WHO=World health organization.
- Zn=Zinc.
- ZO-1=Zonula occludens1.
- μ =Micron
- μ m = Micro meter.
- μg/l=Micro gram per liter.
- µg/dl= Micro gram per deciliter.

List of figures

Figure 1	A cross-sectional view of a <i>Giardia lamblia</i> trophozoite with E/M	Page 9
Figure 2	Giardia trophozoite, Giemsa stain,	Page 10
Figure 3	ultra structure of <i>Giardia lamblia</i> cyst showing encysted organism with peripheral vesicles	Page 11
Figure 4	Giardia cyst stained with iron-hematoxylin	Page 12
Figure 5	Thin cross-section of the ventral disk shows the microtubules and ribbons .	Page 14
Figure 6	Thin section in a frontal view passing through the emergence of the ventral flagella (VF) in a caudal direction.	Page 15
Figure 7	Giardia flagella have (nine sets of two microtubules arranged in a circle with two microtubules in the center).	Page 15
Figure 8	life cycle of Giardia lamblia	Page 19
Figure 9	Giardia lamblia trophozoite emerging from Cyst	Page 20
Figure 10	Giardia lamblia trophozoite undergoing division	Page 21
Figure 11	Giardia trophozoites in section of intestine (H&E).	Page 25
Figure 12	Trophozoite detachment leaves a dome-shaped imprint in the brush border suggesting that contractile forces are involved in attachment.	Page 26
Figure 13	upper picture shows normal intestinal villi (projecting), lower picture shows villus atrophy (flattened) due <i>Giardia</i> infection.	Page 27
Figure 14	Barium follow-through small intestine demonstrating thickening of the jejunal mucosal folds	Page 28
Figure 15	<i>Giardia</i> trophozoites live upon the surface of the villi of the small intestine. A trophozoite attached to the columnar cells of the intestine. T.E.M.	Page 30
Figure 16	Massive numbers of trophozoites can cover the epithelial surface of small intestine resulting in a cobblestone road like appearance	Page 31
Figure 17	Centrifuge apparatus used in concentration method.	Page 62
Figure 18	Formalin-Ethyl Acetate Sedimentation Concentration method [A] Shows straining of stool-formalin mixture through double layer of gauze. [B] Shows four layers resulted after centrifugation: a small amount of sediment (containing the parasite) in the bottom of the tube; a layer of formalin; a plug of fecal debris on top of the formalin layer; and a layer of ethyl acetate on the top.	Page 62
Figure 19	Atomic absorption spectrophotometer used in estimation of micronutrients.	Page 64

List of figures

Figure 20	Mean age of the two groups	Page 67
Figure 21	Age distribution in infected group	Page 67
Figure 22	Sex distribution of the two groups	Page 68
Figure 23	Clinical manifestations of the infected group	Page 70
Figure 24	The relation between abdominal pain and different micronutrients measured.	Page 72
Figure 25	The relation between intermittent diarrhea and different micronutrients measured.	Page 74
Figure 26	The relation between weight loss and different micronutrients measured.	Page 76
Figure 27	The weight percentile data of the two groups.	Page 78
Figure 28	The mean of serum Fe level in infected and control groups.	Page 80
Figure 29	The mean of serum Cu level in infected and control groups.	Page 81
Figure 30	The mean of serum Zn level in infected and control groups.	Page 82
Figure 31	The mean of serum Cu level in relation to percentiles.	Page 84
Figure 32	The mean of serum Fe level in relation to percentiles.	Page 85
Figure 33	The mean of serum Zn level in relation to percentiles.	Page 86
Figure 34	Giardia lamblia trophozoite stained with iodine as detected in faecal samples of infected group (x1000).	Page 88
Figure 35	Giardia lamblia cyst stained with iodine as detected in faecal samples of infected group (x1000).	Page 89
Figure 36	Serum level of micronutrients and its relation to <i>Giardia</i> cyst and trophozoite stages in infected group.	Page 90

List of tables

Table 1	The demographic data of infected and control groups.	Page 66
Table 2	The different clinical manifestations of the infected group	Page 69
Table 3	The relation between abdominal pain and different micronutrients measured.	Page 71
Table 4	The relation between intermittent diarrhea and different micronutrients measured.	Page 73
Table 5	The relation between weight loss and different micronutrients measured.	Page 75
Table 6	The weight percentile data of the two groups	Page 77
Table 7	The three micronutrients level in infected and control groups.	Page 79
Table 8	The three micronutrients with percentiles in the two groups.	Page 83
Table 9	Serum level of micronutrients and its relation to <i>Giardia</i> cyst and trophozoite stages in infected group.	Page 87

Table of contents

Table of contents

Introduction and aim of work	1
Chapter 2: Review of literature	5
Epidemiology	5
Morphology and life cycle	9
Pathology	24
Pathogenesis	30
Clinical picture	36
Immunological reaction	44
Diagnosis	49
Treatment	56
Materials and methods	57
Results	65
Discussion	91
Summary	102
Conclusion	105
Recommendations	106
References	
Arabic summary	129

To my beloved mother, my sisters

To my husband and my children,

And to the soul of my father,

بسم الله الرحمن الرحيم

Introduction

Giardiasis is a major diarrheal disease found throughout the world. The flagellate protozoan *Giardia lamblia*, its causative agent, is the most common intestinal protozoal parasite isolated worldwide. *Giardia* is one of the first enteric pathogens to infect infants in the developing world, with peak prevalence rates of 15-20% in children younger than 10 years (Pennardt et al., 2008).

The flagellate *Giardia lamblia* (syn. *Giardia intestinalis*, *Giardia duodenalis*) was first discovered by Leeuwenhoek in 1681 in his stool specimens but was not described until 1859 by Lambl (Garcia, 2007). The first good accounts and illustrations of *Giardia* were by Vilèm Lambl (1859), but the parasite received little attention until the war of 1914-1918 when troops returning to the UK with diarrhea were found to have in their faeces. In 1921 the distinguished British protozoologist Clifford Dobell suggested that *Giardia* could be a serious pathogen (Dobell, 1921) and in 1926 Reginald Miller observed diarrhea and malabsorption in some children infected with *Giardia* (Miller, 1926). Where as others acted as unaffected carriers (Cox, 2002).

In the last 300 years since *Giardia* was first discovered it has become recognized as a common and serious pathogen worldwide. It is still not known how many species infect human being and what role, if any, is played by reservoir hosts in the epidemiology of the infection (Garcia, 2005).

Over several million cases of malabsorptive diarrhea by giardiasis are estimated to occur annually worldwide and waterborne outbreaks of giardiasis are frequent in areas where unfiltered water is routinely contaminated (Savioli et al., 2006).

Although various criteria, including host specificity, various body dimensions, and variations in structure, have been used to differentiate species of *Giardia*, there is still considerable debate over the appropriate classification and nomenclature regarding this group of organisms. On the basis of work by Filice1952 related to structural variations three groups have been proposed: amphibian *Giardia* spp. (represented by *G.agilis*), the muris group from rodents and birds (represented by *G.muris*), and the intestinalis group from a variety of mammals (including humans), birds, and reptiles (represented by *G.duodenalis*) (Adam,2001).

It has been postulated that the taxonomy of *Giardia* at the species level is still unresolved, as there are biological and molecular differences between isolates within a species; although their cysts or trophozoites morphologically identical. This is further supported by the observations of significant diversity among *G. intestinalis* isolates in host-infectivity assays (Visvesvara et al., 1988), metabolism (Hall et al., 1992), in vitro and in vivo growth requirement (Andrews et al., 1992 and Binz et al., 1992).

Alterations in concentrations of serum Iron, Zinc, Copper, malabsorption syndrome and growth retardation are commonly found in patients with gastrointestinal infections mainly giardiasis (Karakaş et al., 2001).

Introduction and Aim of work

Zinc, Copper and Iron are all vital micronutrient elements for reproduction, growth & development. Low serum levels of these electrolytes may result in serious affection of cellular, physiological & enzymatic function (Tanyüksel et al., 1995).

Aim of work

This study aims at:

- (1) Evaluation of serological levels of Zinc, Copper, and Iron in *Giardia lamblia* infected children as a result of malabsorption process.
- (2) Correlation of giardiasis with other parameters.
- (3) Evaluation of the effect of giardiasis on the weight of infected children.