Optimization of Turbine Film Cooling Using Navier Stokes Equations

By

Eng. Ahmed Mohamed Elsayed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
AEROSPACE ENGINEERING

Optimization of Turbine Film Cooling Using Navier Stokes Equations

By

Eng. Ahmed Mohamed Elsayed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
AEROSPACE ENGINEERING

Under the Supervision of:

Prof.Dr.
Mohamed Madbouli
Abdelrahman

Ass.Prof. Farouk Mohamed Owis

Professor, Aerospace Engineering Department, Cairo University Assistant Professor, Aerospace Engineering Department, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Optimization of Turbine Film Cooling Using Navier Stokes Equations

Eng. Ahmed Mohamed Elsayed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
AEROSPACE ENGINEERING

Approved by the	
Examining Committee:	
Prof. Dr. Mohamed Madbouli Abdelrah Thesis Main Advisor, Member	nar
Ass. Prof. Farouk Mohamed Owis Thesis Advisor, Member	
Prof. Dr. Mohamed Galal Khalafallah Member	
Prof. Dr. Tarek Abdelsalam Member	Tane Abdulsales

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 **Engineer:** Ahmed Mohamed Elsayed Ahmed

Date of Birth: 10/11/1984

Nationality: Egyptian

E-mail: ac_eng_sayed@yahoo.com

Phone: 01066352833

Address: Zglol st. Haram st. Giza, Egypt

Registration Date: 1/10/2010

Awarding Date: / /

Degree: Doctor of Philosophy

Department: Aerospace Engineering

Supervisors: Prof. Dr. Mohamed Madbouly Abdelrahman

Ass. Prof. Farouk Mahmoud Owis

Examiners: Prof. Dr. Mohamed Madbouly Abdelrahman

Ass. Prof. Farouk Mahmoud Owis

Prof. Dr. Mohamed Galal Khalafallah

Prof. Dr. Tarek Abdelsalam

Title of Thesis: Optimization of Turbine Film Cooling Using Navier Stokes Equations

Key Words: cooling, blade, optimizations, simplex, leakage, tip

Summary: There is a need to have an efficient cooling system engineered in a way such that the maximum blade surface temperature during the engine operation does not exceed the maximum allowable temperature of the blade material. In addition, the tip leakage flow across the turbine blade reduces its aerodynamic performance and causes blade-tip overheating due to this high speed flow and the existence of a thin boundary layer. In the current study, film cooling on a flat plate is studied numerically to select the different parameters of the compound-hole shape that could enhance the cooling effectiveness. The flow on the flat plate with film cooling is numerically simulated using the steady, compressible Navier-Stokes equations with turbulence modeling. The flow solver is coupled with an optimization technique to obtain the cooling parameters. The simplex algorithm is used for the optimization procedures. The cooling-hole shape is defined in terms of four variables which are the streamwise angle, the lateral diffusion angle, the forward diffusion angle, and the coolant blowing ratio. Different blade-tip configurations are used in turbines including flat tip, single squealer and double squealer. The effect of these configurations on the turbine losses is investigated numerically on GE-E3 turbine blade. The results indicate that, five stagger cooling arrays on the pressure side and three stagger cooling arrays on the suction side with LFDCA-9.3-14.6 hole-shape are enough to have good cooling of the two sides using 2.17% bleed air of the engine.

ACKNOWLEDGMENTS

(وما توفيقي إلا بالله)

Thanks go first and final to Allah who gave me the patience to complete this work.

I would like to express my deep appreciation to my supervisors **Prof. Dr. Mohamed Madbouli Abdelrahman**, Professor, Aerospace Engineering Department, Cairo University, and **Ass.Prof. Farouk Mohamed Owis**, Assistant Professor, Aerospace Engineering Department, Cairo University, for their guidance and support the work on this thesis.

I would also like to thinks my family who give me more than support. They gave me the power to continue this research. I think that there are no words that can express my love grateful for them.

I would like to thank my fiancée who enabled me to bypass the more persistent obstacles to thesis completion.

I'm grateful to all engineers in Institute of Aviation Engineering and Technology who supported me. I would like to thank to all my friends for their constant encouragement.

Finally, I would like to thank everybody who was interested to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one.

CONTENTS

	Page
ACKNOWLEDGMENTS	I
CONTENTS	II
LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	XIII
ABSTRACT	XV
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW	V
1.1 The classification of turbine cooling schemes	1
1.1.1 Convection cooling	2
1.1.2 Impingement cooling	2
	2
1.1.4 Transpiration cooling	2
1.1.5 Water/Steam cooling.	3
1.2 Cooled-turbine efficiency	3
1.3 A Close-up at film cooling.	5
1.3.1 Hole shape film cooling	7
1.3.2 Geomatry of film cooling shaped hole	9
1.4 Turbine blade film cooling technology and literature review	11
1.4.1 Injection hole shape	
1.4.2 Effect of surface curvature	14
1.4.3 Effect of blowing ratio.	15
1.4.4 Compound angle (CA) holes with shaping	16
1.4.5 Effect of film hole entry and internal conditions	
1.4.6 Effect of free stream turbulence level.	
1.4.7 Special shapes of film cooling hole	18
1.5 Turbine blade tip leakage flow	20
1.5.1 Problem definition	
1.5.2 Tip leakage flow literature review	
1.5.2.1The mechanism of the tip clearance leakage	
flow	23
1.5.2.2 Quantifying the tip clearance loss	
1.5.2.3 Attempts to modify the tip leakage flow and the	
subsequent loss	27
1.6 Objective of the present study	28
CHAPTER 2: GOVERNING EQUATIONS AND CFDRC	
NUMERICAL CODE	
2.1 Numerical methodology	30

CONTENTS

2.1.1 Description of conservation equations	30
2.1.2 Reynolds stress turbulence model	30
2.1.3 Near wall treatment	32
2.2 CFDRC numerical code	
2.2.1 Introduction and overview of the ESI GROUP	33
2.2.2 CFD-ACE package	34
2.2.2.1 Introduction.	
2.2.2.2 CFD GEOM	35
2.2.2.3 CFD-SOLVER.	
2.2.2.5 CFD-VIEW	
2.2.2.6 Simulation manager	40
CHAPTER 3: FLAT PLATE FILM COOLING OPTIMIZATION	N
3.1 Introduction	
3.2 Numerical model	46
3.2.1 Flat plate numerical simulations.	46
3.2.2 Cooling-hole geometry.	46
3.2.3 Boundary conditions.	
3.2.4 Steps to program the case study by the python language	47
3.2.4.1 Steps to program the first file (plate_geometry	47
.py)	47
	48
.py)	48
optimization.py)	48
3.2.5 Simplex optimization method	
3.3 Unstructured grid sensitivity analysis	
3.4 Verification of numerical model	
3.5 Parametric study of film cooling on a flat plate	
3.5.1 Effect of coolant inlet velocity direction	
3.5.2 Effect of streamwise angle	
3.5.3 Effect of lateral and forward diffusion angles on average	00
effectivess.	68
3.6 Simplex optimization results for film cooling on flat plate	70
CHAPTER 4: EFFECT OF BLADE-TIP GEOMETRY	ON
TURBINE LOSSES AND FILM COOLING	
4.1 Introduction.	72
4.2 Numerical model	72 75
4.2.1 Turbine blade numerical simulations	75 75
4.2.2 Computational model grid.	

400 G 11 1 1	
4.2.3 Cooling hole geometry	77
4.2.4 Boundary conditions.	. 78
4.3 Unstructured grid sensitivity analysis	79
4.4 Verification of numerical model	
4.5 Effect of tip geometry on turbine losses.	
4.6 Effect of tip geometry on turbine tip film cooling	
effectiveness	90
4.6.1 Effect of tip hole positions	90
4.6.2 Effect of streamwise angle for single squealer tip shape	
with tip clearance C/H=1.5%, depth of squealer cavity	
D/H= 2.1% , and blowing ratio M= 1	95
4.6.3 Effect of tip clearance of flat tip shape with streamwise	
angle 90 deg and blowing ratio M=1	96
4.7 Effect of tip film cooling of different tip shapes with	
streamwise angle 90 deg, blowing ratio M=1 and camber line	
holes position on turbine losses	96
r • • • • • • • • • • • • • • • • • • •	70
CHAPTER 5: TURBINE BLADE FILM COOLING	
5.1 Introduction.	98
5.2 Numerical model	98
5.2.1 Turbine blade numerical simulations.	98
5.2.2 Computational model grid.	
5.2.3 Cooling hole geometry	99
5.2.4 Boundary conditions.	99
5.3 Pressure side (concave) film cooling.	100
5.3.1 Blowing ratio effect on pressure side average overall film	
cooling effectiveness	100
5.3.2 Effect of holes array position on pressure side average	
overall film cooling effectiveness	101
5.3.3 Streamwise angle effect on pressure side average overall	101
film cooling effectiveness	102
5.3.4 Spanwise angle effect on pressure side average overall	102
film cooling effectiveness	105
5.4 Suction side (convex) film cooling	105
	106
5.4.1 Blowing ratio effect on suction side average overall film	100
cooling effectiveness.	106
5.4.2 Effect of holes array position on suction side average	100
overall film cooling effectiveness	108
5.4.3 Streamwise angle effect on suction side average overall	
film cooling effectiveness	109
5.4.4 Spanwise angle effect on suction side average overall	
film cooling	111

CONTENTS

5.5 Turbine blade with multi cooling holes arrays	112
5.5.1 Multi cooling holes arrays geometry	112
5.5.2 Turbine blade multi cooling arrays results	114
5.5.3 Turbine blade cooled to hot mass flow ratio	116
5.6 Turbine blade film cooling off-design analysis	117
5.6.1 Effect of turbine blade rotational speed on cooling	
effectiveness	118
5.6.2 Effect of turbine blade pressure ratio on cooling	
effectiveness	119
CHAPTER 6: CONCLUSIONS AND SUGGESTIONS FOR	
FUTURE WORK	
	121
 FUTURE WORK 6.1 Flat plate film cooling results	121 121
 FUTURE WORK 6.1 Flat plate film cooling results. 6.2 Turbine blade tip leakage and film cooling results. 6.3 Turbine blade pressure and suction sides film cooling results. 	
 FUTURE WORK 6.1 Flat plate film cooling results	121

LIST OF TABLES

LIST OF TABLES

Table		Page
Table 2.1	Different packages of ESI group software	34
Table 3.1	Average overall film cooling effectiveness at different	-
	blowing ratios	70
Table 3.2	Optimization results of flat plate film cooling	70
Table 4.1	GE-E3 turbine blade x and y coordinates along the blade	;
	hight	76
Table 5.1	Pressure and suction sides cooling holes arrays numbers,	,
	shapes definition, and positions	113
Table 5.2	Pressure and suction sides average effectiveness of different	-
	cases stated in table 5.1	116
Table 5.3	Turbine blade cooled to hot mass flow ratio with different	-
	hole shapes	116

Figure		Page
Figure 1.1	Classification of turbine cooling schemes	1
Figure 1.2	Various suggested air cooling, [1]	1
Figure 1.3	(a) Convection and impingement cooling, (b) Convection and film cooling, [1]	2
Figure 1.4	(a) Transpiration cooling, (b) Multiple – small hole transpiration, [1]	_
Figure 1.5	Schematic of water cooling.	
Figure 1.6	Cooled turbine blade types	4
Figure 1.7	Effects of various types of cooling on turbine efficiency	4
Figure 1.8	Film cooling in turbine blade, [3]	5
Figure 1.9	Blade surface temperatures with different air cooling	
rigare 1.9	schemes, [4]	5
Figure 1.10	Ideal tangential slot film cooling, [1]	6
Figure 1.11	(a) Film cooling on gas turbine nozzles, [1], (b) Film	
riguic 1.11	cooling on a gas turbine blade, [1]	7
Figure 1.12	Film cooling injection angles	8
Figure 1.12	(a) Simple angle holes, (b) Compound angle holes	8
Figure 1.13		9
Figure 1.14 Figure 1.15	Modern HPT film cooled blade and vane, [1]	9 10
•	Cylindrically-round simple-angle (CYSA) holes	
Figure 1.16	Laterally-diffused simple-angle (LDSA) holes	10
Figure 1.17	Forward-diffused simple-angle (FDSA) holes	11
Figure 1.18	Laterally- and forward-diffused simple-angle (LFDSA)	1.1
E: 1 10	hole	11
Figure 1.19	Various slot injection, [5]	12
Figure 1.20	Film cooling injection from discrete holes	13
Figure 1.21	Film cooling hole geometries, [16]	14
Figure 1.22	Averaged film cooling effectiveness at M=1.0, [16]	14
Figure 1.23	Oil and dye surface traces for compound angle, shaped	1.
E' 101	film holes.	16
Figure 1.24	Effect of free stream turbulence intensity, [33]	18
Figure 1.25	Proposed alternative film holes shapes	20
Figure 1.26	The pressure differential causes flow to leak though the	
	tip gap and form the passage vortex in the suction corner.	21
Figure 1.27	The isentropic leakage flow expands to the same velocity	
	as that expected at the outlet from the rotor but is poorly	
	deflected	22
Figure 1.28	The various tip treatments investigated, [40]	23
Figure 1.29	The distribution of the blade surface pressure for various	
	clearances at 60% chord showing the attached flow on	
	the tip surface adjacent to the pressure corner, [42]	24
Figure 1.30	Static pressure contours on the blade surface in the	
	clearance gap showing the minimum pressure near mid	
	chord for various clearances, [42]	24

Figure 1.31	The suggested mechanism of the emergence of low momentum fluid from the separation bubble and the	
	subsequent mixing with the passage flow, [49]	25
Figure 1.32	The total endwall loss development showing the	23
rigule 1.52		
	contributions due to internal gap shear, secondary/	2.
E. 100	endwall loss and leakage jet mixing loss [49]	26
Figure 1.33	A selection of tip treatments by various researchers, [40]	28
Figure 2.1	Schematic representation of CFD-ACE package	36
Figure 3.1	Gas turbine blade cooling schematic (a) External cooling	
	(b) Internal cooling	42
Figure 3.2	Protective film layer made by coolant injection	43
Figure 3.3	Flat plate numerical model	46
Figure 3.4	Generalized cooling hole configuration; LFDSA type	46
Figure 3.5	Model boundary conditions	47
Figure 3.6	Reflection, expansion, or contraction operations on	
118010 010	search area of 2-D simplex	50
Figure 3.7	Optimization loop of CFD-ACE package	50
Figure 3.8	Unstructured grid used for the LFDSA-5-5 hole with a	50
1 iguic 5.6	minimum cell size of 0.4 mm and a maximum cell size of	
		51
Figure 2.0	2.4 mm.	31
Figure 3.9	Variation of the average film cooling effectiveness with	50
E' 2.10	the grid size for M=1	52
Figure 3.10	Contours of y+ on the wall for different number of grid	50
TI 0.11	cells	52
Figure 3.11	Variation of the wall local film cooling effectiveness for	
	LFDSA-5-5 hole, streamwise angle 30 deg and M=1 with	
	different number of cells.	53
Figure 3.12	Variation of the local film cooling effectiveness with the	
	spanwise direction for LFDSA-5-5 hole, streamwise	
	angle 30 deg and M=1	54
Figure 3.13	Comparison of static temperature contours of a single	
	cylindrical hole	55
Figure 3.14	Variation of local film cooling effectiveness with the	
	spanwise direction at two different positions of (X/D)	56
Figure 3.15	Schematic of two model inlet cooling flow direction	56
Figure 3.16	Top and symmetric planes of LFDSA 15-15 and M=0.45.	57
Figure 3.17	Top and symmetric planes of LFDSA 15-15 and M=1	57
Figure 3.18	Top and symmetric planes of LFDSA 15-15, M=2 for	
C	different coolant velocity direction	58
Figure 3.19	Velocity vectors on a symmetric plane and the coolant	
118010 0113	velocity normal to boundary	59
Figure 3.20	Velocity vector on a symmetric plane for a velocity in	
1 15010 5.20	direction of streamwise angle	61
Figure 3.21	Velocity profile at the wall centerline for LFDSA-15-15	O1
1 15010 3.21	and different blowing ratio	62
Figure 3.22	Centerline effectiveness vs. X/D of LFDSA-15-15 hole	02
1 15410 3.44	Contourne directiveness vs. 14/D of Li Doll-13-13 Hole	

Figure 3.23	shape for different blowing ratios	63
118010 0120	(X/D=2) film cooling effectiveness for cooling hole forward angle of 15° and streamwise angle of 30°	64
Figure 3.24	Top and symmetric planes effectiveness of CYSA for different streamwise angles and M=0.2	65
Figure 3.25	Top and symmetric planes effectiveness of CYSA for different streamwise angles and M=0.45	65
Figure 3.26	Top and symmetric planes effectiveness of CYSA for different streamwise angles and M=1	66
Figure 3.27	Top and symmetric planes effectiveness of CYSA for different streamwise angles and M=2	66
Figure 3.28	Variation of the centerline effectiveness with X/D for CYSA	67
Figure 3.29	Stream tubes on flat plate with cylindrically hole shape (CYSA)	68
Figure 3.30	Average overall film cooling effectiveness versus blowing ratio for different streamwise angles of different	
	hole shapes	69
Figure 3.31	Optimization history of flat plate film cooling effectiveness	71
Figure 3.32	Effectiveness and temperature contours of flat plate film cooling for optimum hole-shape	70
Figure 4.1	Three tip configurations and schematic of the computational domain with different cross sectional	, 0
	planes	75
Figure 4.2	Computational grid for single squealer and double	
	squealer tips	77
Figure 4.3	Cooling-holes configuration and grid	78
Figure 4.4	Turbine blade computational domain and boundary conditions	78
Figure 4.5	Average total pressure loss coefficient versus cell number of flat tip shape with tip clearance C/H=1.5%	79
Figure 4.6	Variation of a flat tip shape total pressure profile at different cutting planes along the blade chord and along	
Figure 4.7	the half chord thickness with tip clearance C/H=1.5% Comparison of film cooling effectiveness on flat and double squarely tips for saven combar line holes with	80
	double squealer tips for seven camber line holes with	01
Figure 4.8	C/H=1.5%, D/H=2.1% and blowing ratio M=1 Comparison of surface pressure distributions at different	81
rigule 4.6	blade height locations	82
Figure 4.9	Static pressure contour of different tip shapes with	02
1 15010 7.7	different tip clearances and different cavity depths	83
Figure 4.10a	Local total pressure loss coefficient for the flat and the	55
_ 10vvu	single squealer tip shapes with different tip clearances	
	and tip cavity depths	85

Figure 4.10b	squealer tip shape with different tip clearances and tip	
Eigene 4 11a	cavity depths.	86
Figure 4.11a	Comparison of path lines for flat tip and single suction side squealer tip configurations with different tip	
	clearances and different squealer cavity depths	87
Figure 4.11b	Comparison of path lines for double squealer tip	07
118010110	configuration with different tip clearances and different	
	squealer cavity depths	88
Figure 4.12	Variation of average total pressure loss coefficient of	
_	different turbine tip shapes with different tip clearances	
	and different cavity depths	89
Figure 4.13	Flat tip effectiveness contours with tip clearance	
	C/H=1.5% for different holes positions and different	
	blowing ratios	91
Figure 4.14	Single squealer tip effectiveness contours with tip	
	clearance C/H=1.5% and depth of squealer cavity	
	D/H=2.1% for different holes positions and different	
	blowing ratios	91
Figure 4.15	Double squealer tip effectiveness contours with tip	
	clearance C/H=1.5% and depth of squealer cavity	
	D/H=2.1% for different holes positions and different	00
E: 4.16	blowing ratios.	92
Figure 4.16	Tip average overall film cooling effectiveness versus	
	blowing ratio for different tip shapes with tip clearance	
	C/H=1.5%, depth of squealer cavity D/H=2.1% and different holes positions.	93
Figure 4.17	Tip average overall film cooling effectiveness versus	93
11guic 4.17	blowing ratio for different holes positions with different	
	tip shapes of tip clearance C/H=1.5% and depth of	
	squealer cavity D/H=2.1%	94
Figure 4.18	Path lines (colored by static temperature) of different tip	
8	configurations for seven camber line holes with	
	C/H=1.5%, D/H=2.1% and blowing ratio M=1	95
Figure 4.19	Single squealer tip effectiveness contours for seven	
	camber line holes with tip clearance C/H=1.5%, depth of	
	squealer cavity D/H=2.1%, M=1 and different	
	streamwise angles	95
Figure 4.20	Flat tip effectiveness contours for seven camber line	
	holes with blowing ratio M=1 and different tip clearances	96
Figure 4.21	Comparison of average total pressure loss coefficient	
	versus tip clearance of various tip shapes with and	
	without film cooling and the depth of squealer cavity	07
Eigene 5 1	D/H= 2.1%	97
Figure 5.1	Computational model grid for single squealer tip with PS and SS holes systems	98
	and the number available	7(

Figure 5.2	Turbine blades Pressure side and Suction side with cooling holes.	99
Figure 5.3	Three views of blade LFDCA hole shape	99
Figure 5.4	Fourth hole pressure side film cooling effectiveness of	"
riguic 3.4		
	different hole shapes located at $L/L_{ps} = 0.25$, with	100
	α =60° and β =0° at different blowing ratios	100
Figure 5.5	Pressure side average overall film cooling effectiveness	
	of different holes shapes located at $L/L_{ps} = 0.25$, with	
	α =60° and β =0° at different blowing ratios	101
Figure 5.6	Pressure side average overall film cooling effectiveness	
	of different holes shapes with M=1, α =60° and β =0°	
	located at different positions	102
Figure 5.7	Pressure side film cooling effectiveness of different hole	
\mathcal{C}	shapes at cutting plane located at the fourth hole from the	
	blade tip with different streamwise angles	103
Figure 5.8	Stream tubes for CYCA cooling hole on pressure side	100
115410 5.0	surface with cooling holes array located at $L/L_{ps} = 0.25$,	
	M=1 and zero spanwise angle at different streamwise	
	•	104
E: 5 0	angles	104
Figure 5.9	Pressure side average overall film cooling effectiveness	
	of different holes shapes located at $L/L_{ps} = 0.25$ with	
	β =0° and M=1 with different streamwise angles	104
Figure 5.10	Pressure side film cooling effectiveness of the fourth hole	
	from the blade tip of different hole shapes with different	
	spanwise angles	105
Figure 5.11	Pressure side average overall film cooling effectiveness	
	of different holeshapes located at $L/L_{ps} = 0.25$ with	
	α =60° and M=1 with different spanwise angles	106
Figure 5.12	Suction side film cooling effectiveness of different hole	
\mathcal{C}	shapes located at L/L _{ss} = 0.25, with α =60° and β =0° at	
	different blowing ratios.	107
Figure 5.13	Suction side average overall film cooling effectiveness of	107
118410 3.13	different holes shapes located at $L/L_{ss} = 0.25$, with	
	α =60° and β =0° at different blowing ratios	107
Figure 5.14	The fourth hole pressure and suction sides film cooling	107
1 iguic 3.14	effectiveness of simple and compound hole shapes with	
	M=1, α =60° and β =0° located at different positions	108
Eiguro 5 15	•	100
Figure 5.15	Suction side average overall film cooling effectiveness of	
	different holes shapes with M=1, α =60° and β =0° located	100
E' 5.16	at different positions.	109
Figure 5.16	Suction side film cooling effectiveness of different hole	
	shapes at cutting plane located at the fourth hole from the	110
TO: # 4 =	blade tip with different streamwise angles	110
Figure 5.17	Suction side average overall film cooling effectiveness of	
	different holes shapes located at $L/L_{cs} = 0.25$ with $\beta=0^{\circ}$	