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ABSTRACT 
Enormous quantities of practically untapped talc-magnesite rocks are 
distributed in the Barramiya and Wadi Atalla districts in intimate spatial and 
genetic association with the ophiolitic serpentinites. These deposits are an 
important potential source of magnesia, which is used in a broad spectrum 
of strategic industries. The ophiolitic serpentinites represent obducted 
oceanic slices onto island-arc successions. The talc-magnesite deposits are 
located: a) along major faults that cut the serpentinite slices, or b) at thrust 
contacts between obducted serpentinites and other country rocks of island-
arc affinity. The latter were regionally metamorphosed at greenschist up to 
middle amphibolite facies conditions.  The talc-magnesite rocks represent in 
situ fissure-fed metasomatic products of serpentinite precursors via 
extensive rock-fluid interactions. The main fluids involved in the 
transformation processes were SiO2 aqueous solutions and CO2. The 
deposits located along the fault systems cutting the serpentinite-host are 
magnesite-rich, whereas those located at the contacts between serpentinites 
and the more siliceous country rocks are typically talc-rich. Based on the 
proportional distribution of talc and magnesite in conjunction with other 
accessories, the rocks have been distinguished into assemblages. Their 
characteristics, petrogenesis and evolution from serpentinite precursors are 
elaborated in the light of their petrography, XRD, EDAX and XRF data. 
Constraints on the conditions of their formation include temperature of 
about 490°C and a maximum XCO2 of about 0.13. New mapping was 
undertaken for both Barramiya and Wadi Atalla districts using remote 
sensing and GIS techniques. The talc-carbonate rocks of both areas were 
mapped as separate layers and their reserve estimations were accomplished. 
Representative talc-carbonate samples were used in the production of 
refractory shaped cordierite ceramics. The latter is recommended as kiln 
furniture and car-top lining for the tunnel-kilns used in firing clay building 
bricks up to 1000 - 1100oC as a maximum service temperature. 
 
Key words: Talc-carbonates, Ophiolits, Serpentinites, Barramiya, 

Wadi Atalla, Petrogenesis, Cordierite, Refractory 
Ceramics. 
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